облегчить и повысить доходность их деятельности, улучшить обеспечение материально-техническими ресурсами; расширить заготовительные, перерабатывающие, кредитные и сбытовые услуги; снизить конкуренцию со стороны посредников.

Библиографический список

- 1. Гражданский кодекс Российской Федерации (часть первая и вторая) // СПС «Консультант Плюс», 2013.
- 2. Федеральный закон от 11.06.2003 № 74-Ф3 (ред. от 25.12.2012) «О крестьянском (фермерском) хозяйстве»// СПС «Консультант Плюс», 2013.
- 3. Федеральный закон от 07.07.2003 № 112-Ф3 (ред. от 21.06.2011) «О личном подсобном хозяйстве»// СПС «Консультант Плюс», 2013.

- 4. Федеральный закон от 29.12.2006 № 264-ФЗ (ред. от 28.02.2012) «О развитии сельского хозяйства»// СПС «Консультант Плюс», 2013.
- 5. Постановление Правительства РФ от 14.07.2012 № 717 (ред. от 23.04.2012) «О Государственной программе развития сельского хозяйства и регулирования рынков сельскохозяйственной продукции, сырья и продовольствия на 2013 2020 годы»// СПС «Консультант Плюс», 2013.
- 6. Приказ Министерства сельского хозяйства Ульяновской области № 114 от 01.03.2012 г. Об утверждении ведомственной целевой программы «Поддержка начинающих фермеров Ульяновской области на период 2012-2014 годы» // СПС «Консультант Плюс», 2013.

УДК 338.436.33

ОЦЕНКА УРОВНЯ ИННОВАЦИОННОГО РАЗВИТИЯ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПРОИЗВОДСТВА (РАСТЕНИЕВОДСТВА) УЛЬЯНОВСКОЙ ОБЛАСТИ

Постнова Марина Викторовна, кандидат экономических наук, заведующая кафедрой «Экономика и управление на предприятиях АПК»

Грицков Сергей Валерьевич, аспирант ФГБОУ ВПО «Ульяновская ГСХА им. П.А. Столыпина» 432017, г. Ульяновск, бульвар Новый Венец, 1 Тел.: 8 (8422) 55-95-54 e-mail: pmv@ugsha.ru, terenga@yandex.ru

Ключевые слова: инновационная деятельность, растениеводство, элитное семеноводство, ресурсосберегающие технологии, удобрения, уровень инновационного развития, картограмма.

В статье рассматриваются направления развития инновационной деятельности в отрасли растениеводства и их специфика. Отмечается необходимость использования большего количества инноваций в сельскохозяйственном производстве. Представлена оценка применения инноваций в сельскохозяйственных предприятиях Ульяновской области. Предложена методика определения уровня развития инновационной деятельности в отрасли растениеводства.

Современные экономические реалии требуют от сельхозтоваропроизводителей

для повышения своей конкурентоспособности, с учетом вступления России в ВТО, при-

Таблица 1 Уровень использования ресурсосберегающих технологий сельскохозяйственными предприятиями Ульяновской области (растениеводство)

	200	2008 г.		9 г.	201	0 г.	2011 г.	
Показатели	тыс. га	уд. вес, %						
Посевная площадь, всего	878,9	100,0	963,0	100,0	950,2	100,0	991,2	100,0
В т.ч. возделывается по минимальной техноло- гии	87,0	9,9	158,0	16,4	80,1	8,4	84,4	8,5
по нулевой технологии	12,2	1,4	57,1	5,9	40,6	4,3	52,4	5,3
Ресурсосберегающие технологии, всего	99,2	11,3	215,1	22,3	120,7	12,7	136,8	13,8

менять все большее количество инноваций, для того чтобы импортная продукция окончательно не вытеснила их с внутренних рынков. Поэтому инновационный путь развития сельского хозяйства и его основной отрасли – растениеводства – видится наиболее приемлемым и необходимым в настоящий период.

Под инновацией понимается процесс внедрения в производство или реализации на рынке интеллектуальной собственности, результатов научных исследований и разработок, приводящих к появлению новых, более совершенных видов товаров или услуг, в конечном итоге влияющих на повышение научно-технического, экономического, социального, экологического или иного эффекта от их использования [1].

Рассматривая специфику инновационной деятельности в АПК, необходимо отметить следующие ее особенности:

-в аграрном производстве чаще используются улучшающие инновации, крайне редко создаются единые технологии и еще реже прорывные, тем самым их коммерциализация в большинстве случаев приносит незначительный экономический эффект;

-недостаточный объем собственных финансовых средств у сельхозтоваропроизводителей, слабая конкуренция на рынке инновационных продуктов значительно сдерживают реализацию и распространение инноваций;

-высокая степень территориальной разобщенности сельского хозяйства и существенная дифференциация регионов по ус-

ловиям производства [2].

Инновационный процесс в аграрном секторе представляет собой постоянный и непрерывный поток превращения технических или технологических идей в новые технологии или отдельные её составные части и доведение их до использования непосредственно в производстве с целью получения качественно новой продукции [3]. Иными словами, инновационный процесс в АПК носит цикличный характер, обусловленный наличием обратных связей, встроенных в механизм самого инновационного процесса.

Инновационное развитие АПК Ульяновской области началось с момента реализации приоритетного национального проекта «Развитие АПК», который в дальнейшем трансформировался в Государственную программу развития сельского хозяйства и регулирования рынков сельскохозяйственной продукции. В рамках этих проектов государство стало более активно влиять на развитие сельского хозяйства путем оказания все более возрастающей поддержки.

В настоящий период наибольший уровень использования результатов инновационной деятельности среди отраслей сельскохозяйственного производства наблюдается в земледелии и растениеводстве. К инновациям в данной сфере можно отнести: использование новых сортов и технологий возделывания сельскохозяйственных культур; новые виды удобрений и системы их применения; современные средства защиты растений; использование регуляторов

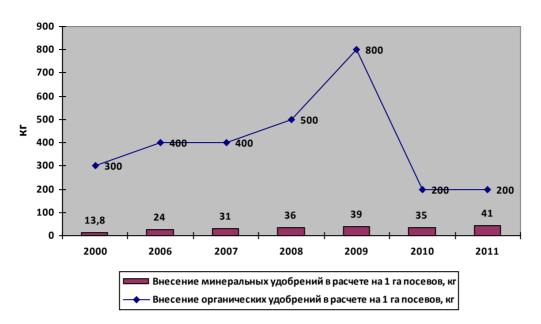


Рис. 1 – Уровень внесения минеральных и органических удобрений на 1 га посевов в сельскохозяйственных предприятиях Ульяновской области

роста растений и т.д. [4]. Многие хозяйства постепенно отказываются от использования традиционной технологии, переходя к минимальной и нулевой. Однако удельный вес ресурсосберегающих технологий в общей посевной площади пока недостаточно велик (табл.1).

Из данных таблицы 1 видно, что уровень использования инновационных технологий возделывания сельскохозяйственных культур в 2011 г. составил 13,8%. Так, из 991,2 тыс. га общей посевной площади 84,4 тыс. га возделывалось по минимальной технологии, а 52,4 тыс. га с использованием технологии прямого сева. Наибольший уровень использования ресурсосберегающих технологий в динамике 2008-2011 гг. был отмечен в 2009 г., когда их удельный вес в общем объеме составил 22,3%. Данный рост был вызван реализацией в заволжской зоне Ульяновской области инвестиционного проекта, связанного с внедрением нулевой технологии возделывания сельскохозяйственных культур. Стоит также отметить, что данные технологии в большей мере используются лишь при производстве зерна.

Одно из основных направлений научно-технического прогресса в земледелии – производство и применение минеральных удобрений и других химических средств по-

вышения урожайности и качества продукции. Высокий уровень, а также высокое качество урожая зерновых и других сельскохозяйственных культур возможно обеспечить лишь при сравнительно больших сбалансированных по питательным элементам дозах внесения минеральных и органических удобрений [5].

Рассматривая уровень внесения органических удобрений под посевы за период с 2000 по 2009 гг., следует отметить, что объемы использования данного вида удобрений ежегодно увеличивались (рис. 1). Однако с 2010 г. наблюдается снижение уровня внесения в расчете на 1 га посевов до 200 кг. Уровень внесения минеральных удобрений в расчете на 1 га в 2011 г. по сравнению с 2000 г. увеличился в 2,9 раза и составил 41 кг. За рассматриваемый период удельный вес удобренной площади во всей посевной площади увеличился вдвое, и в 2011 г. составил 60%.

Важные элементы инновационных процессов в растениеводстве — селекция и семеноводство сельскохозяйственных культур. По имеющимся оценкам, вклад селекции в повышение урожайности важнейших сельскохозяйственных культур может достигать 70% всей величины производства. Роль селекции и семеноводства будет возрастать

Таблица 2 Использование оригинальных и элитных семян в сельскохозяйственных предприятиях Ульяновской области

	200	00г.	200)6г.	200)7г.	200)8г.	200)9г.	201	LOг.	2011г.	
Показатели	Озимые культуры	Яровые культуры												
Удельный вес														
оригинальных и		~	9	(7	4	4	∞	_		~	_	7	2
элитных семян в	3,6	4,8	11,	8,9	12,	11,	10,	12,	10,7	9,3	7,3	10,7	10,2	11,
массе высеянных			, ,		, ,		, ,	` '	` '			` '		, ,
семян, %														

и дальше. Это связано как с общими тенденциями к биологизации и экологизации инновационных процессов в агроэкономике, так и с возросшими возможностями селекционной науки в управлении параметрами выращиваемых культур [6].

В последние годы в регионе отмечается небольшой рост использования элитных семян для посева основных сельскохозяйственных культур (табл. 2).

Так, в 2011 г. удельный вес оригинальных и элитных семян в массе высеянных семян по озимым культурам составил 10,2%, а по яровым — 11,5%.

Развитие инновационной деятельности в аграрном производстве, как и любого другого вида деятельности, должно сопровождаться ее оценкой, включающей систему показателей, характеризующих уровень ее развития. Однако в настоящий период отсутствует единая методика определения уровня инновационной деятельности в сельском хозяйстве, поэтому существует необходимость разработки методических подходов к оценке уровня развития инновационной деятельности в аграрном производстве, в частности, в растениеводстве.

В этой связи особый интерес представляет методика, представленная в работе Сидельникова А.Г. [7], сущность которой заключается в установлении факторов, влияю-

щих на развитие инновационной деятельности в сельском хозяйстве (технологические и организационно-экономические), и показателей для оценки уровня организации и стимулирования инновационного развития (количество условной продукции (условное зерно) на 1 га с.-х. угодий; коэффициент обновление основных средств; урожайность сельскохозяйственных культур; прибыль на 100 га сельхозугодий; выручка на 100 руб. стоимости основных средств; производительность труда; оплата труда 1 чел.-часа; расходы на НИОКТР на 1 га сельхозугодий; размер господдержки на условную продукцию).

Однако считаем, что такой показатель, как фондоотдача, не в полной мере может быть использован для оценки уровня инновационного развития, так как в первую очередь он характеризует эффективность использования основных средств, в составе которых может и не быть ресурсосберегающей техники и оборудования. С учетом представленных ранее направлений развития инновационной деятельности в растениеводстве, для оценки уровня ее развития предлагаем использовать показатели, характеризующие размер затрат хозяйствующих субъектов на элитное семеноводство, удобрения, химические средства защиты растений в расчете на 100 га сельхозугодий.

Таким образом, с учетом ее дополнения нами предложена методика определения уровня развития инновационной деятельности отрасли растениеводства районов Ульяновской области. Представленный методический подход основывается на расчете интегрального показателя для каждого района области, в состав которого входят данные, характеризующие уровень организации и стимулирования инновационного развития сельского хозяйства.

$$Y = X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9$$
 (1)

где, Y — интегральный показатель инновационного развития сельского хозяйства (растениеводства);

X1 – затраты на удобрения и их внесение в расчете на 100 га сельхозугодий, руб.;

X2 — затраты на химические средства защиты растений в расчете на 100 га сельхозугодий, руб.;

X3 – господдержка в расчете на 100 га сельхозугодий, руб.;

X4 — чистая прибыль в расчете на 100 га сельхозугодий, руб.;

X5 – затраты на элитное семеноводство в расчете на 100 га сельхозугодий, руб.;

Х6 – производительность труда, руб.;

X7 – оплата 1 чел.-час., руб.;

X8 – коэффициент обновления основных средств, %;

Х9 – урожайность зерновых, ц/га.

На основе проведенного анализа совокупности данных за 2007-2011 гг. были рассчитаны интегральные показатели инновационного развития сельского хозяйства (растениеводства) районов Ульяновской области (табл. 3).

Интегральный показатель инновационного развития отрасли определялся с помощью частных коэффициентов следующим образом — среднее значение показателя по

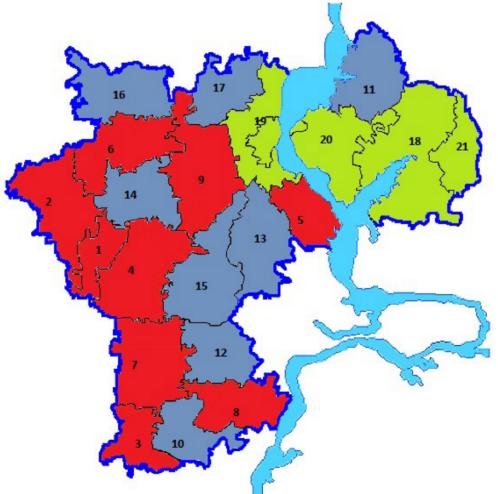


Рис. 2 — Картограмма уровня развития инновационной деятельности в сельском хозяйстве Ульяновской области

Таблица 3

1 Баз 3 Пав 4 Бақ 5 Сен 6 Кақ 7 Ни 9 Ма 10 Ста 11 Ста 12 Нои	Районы Базарно-Сызганский Инзенский Павловский Барышский	X1	^	\$	**	!		;		(;	;
	зарно-Сызганский ізенский вловский рышский		77	73	X4	X2	9X	×	×	6X	>
	зарно-Сызганский заенский вловский рышский		Низк	ий уровень	Низкий уровень инновационного развития	онного ра	ЗВИТИЯ				
	зенский вловский рышский	0,003	0,000	0,002	0,102	000'0	0,209	0,395	0,233	0,380	1,324
	вловский рышский	600'0	0,009	0,097	0,000	0,712	0,318	0,740	0,443	0,588	2,916
	рышский	0,414	0,422	0,305	0,593	000'0	0,554	0,797	0,530	0,624	4,240
	21220000	0,404	0,453	0,459	0,114	0,323	0,599	0,822	0,700	0,744	4,618
	HIMICCOCKNIN	0,327	0,224	0,572	0,498	0,592	0,580	0,924	0,759	0,735	5,210
	Карсунский	0,418	0,335	0,665	0,964	000'0	1,076	0,756	0,860	0,959	6,033
	Николаевский	0,536	0,200	0,911	0,688	000′0	0,881	9/8/0	1,666	0,828	885'9
	Радищевский	0,279	0,107	0,816	1,507	098'0	0,725	0,838	0,692	0,830	6,654
	Майнский	0,614	0,465	0,629	0,536	0,431	1,295	1,019	0,949	0,762	002'9
			Средн	ий уровен	Средний уровень инновационного	ионного ра	развития				
	Старокулаткинский	0,187	0,267	1,006	2,127	0,461	0,554	988'0	1,108	988′0	2,383
	Старомайнский	0,521	0,601	0,767	0,878	1,342	0,774	986′0	0,931	1,202	8,002
	Новоспасский	0,394	0,208	0,657	1,392	0,796	2,082	1,000	0,951	0,952	8,432
13 Tep	Тереньгульский	0,648	0,549	0,235	0,000	3,290	1,211	1,656	0,185	0,792	8,566
14 Beı	Вешкаймский	1,005	0,856	1,128	2,369	000'0	0,889	0,945	0,741	1,197	9,129
15 Ky ₃	Кузоватовский	0,628	0,178	0,573	1,598	000′0	1,699	1,806	2,659	0,872	10,012
16 Cyp	Сурский	1,685	1,767	0,560	1,287	0,567	1,049	0,862	1,250	1,472	10,497
17 Ци.	Цильнинский	996'0	1,446	0,651	1,050	3,680	0,818	0,786	0,481	1,042	10,921
			Высок	ий уровен	Высокий уровень инновационного развития	ионного р	азвития				
18 Me	Мелекесский	1,016	1,059	1,510	3,491	0,773	1,423	1,298	1,249	1,412	13,230
19 Уль	Ульяновский	1,895	1,954	2,266	2,828	0,838	1,347	1,357	1,361	1,181	15,028
20 Yep	Чердаклинский	4,466	2,277	4,203	0,000	2,807	1,332	1,075	1,926	1,088	22,174
21 Hoi	Новомалыклинский	4,585	7,623	2,986	7,656	0,529	1,587	1,227	1,328	1,202	28,723
Средне	Среднеобластное значение	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	9,000

району за 2007-2011 гг. соотносилось к среднеобластной величине за тот же период.

Для качественной оценки уровня инновационного развития необходимо определить его оценочные критерии. Экспертный метод позволил сформировать следующие критериальные интервалы уровня развития: низкий — 1-7; средний — 7-11 и свыше 11 - высокий.

Таким образом, результаты оценки инновационного развития сельскохозяйственного производства (растениеводства) Ульяновской области по представленным критериям свидетельствует о том, что только 4 из 21 района области имеют высокий уровень инновационного развития, 8 - со средним и 9 районов с низким уровнем инновационного развития, что свидетельствует о наличии проблем, связанных с использованием инноваций в сельском хозяйстве. В связи с этим считаем необходимым усиление мер со стороны государственных органов власти, направленных на стимулирование инновационной деятельности в аграрном производстве.

Для того чтобы более наглядно представить размещение районов Ульяновской области по уровню развития инновационной деятельности в сельском хозяйстве, в работе была составлена картограмма, на которой красным цветом нанесены районы с низким уровнем инновационного развития, синим — со средним и зеленым — с высоким уровнем инновационного развития сельскохозяйственного производства (растениеводства).

На представленной картограмме видно, что районы с наибольшим уровнем развития инновационной деятельности расположены в восточной зоне Ульяновской области. Следовательно, можно отметить, что здесь накоплен больший инновационный

потенциал, который может быть использован, в том числе, и для создания инновационного кластера.

Библиографический список

- 1. Грицков, С.В. Инновационная деятельность как фактор развития АПК региона (на материалах Ульяновской области) / С.В. Грицков, Г.В. Лапшина // Международный научный журнал. 2010. № 2.
- 2. Нечаев, В. Развитие инновационных процессов в АПК / В. Нечаев, В. Волощенко // Экономика сельского хозяйства России. 2012. № 10. С. 13-27.
- 3. Ушачев, И.Г. Инновационная деятельность в аграрном секторе экономики России / Под ред. И.Г. Ушачева, И.Т. Трубилина, Е.С. Оглоблина, И.С. Санду. М.: КолосС, 2007. 636 с.
- 4. Нечаев, В.И. Развитие инновационной деятельности в растениеводстве: научное издание / под ред. В.И.Нечаева. М.: КолосС, 2010. 271 с.
- 5. Закшевский, В.Г. Направления развития АПК региона на инновационной основе / В.Г. Закшевский, В.М. Новиков, Е.В. Сальникова // Экономика, труд, управление в сельском хозяйстве. 2012. № 1. С. 25-28.
- 6. Санду, И. Технико-технологические и организационные направления развития инновационных процессов в растениеводстве / И. Санду // Нормирование и оплата труда в сельском хозяйстве. 2010. № 11. С. 17.
- 7. Сидельников, А.Г. Организация и стимулирование инновационной деятельности в сельском хозяйстве: автореферат дис. ...канд. экон. наук: 08.00.05 / Сидельников Андрей Геннадьевич. Красноярск, 2012. 19 с.