ИСПОЛЬЗОВАНИЕ БИОПЛЕКСОВ ЦИНКА И МЕДИ В КОРМЛЕНИИ ЛАКТИРУЮЩИХ КОРОВ

Use biopleksov zinc and copper in lactating cows feeding

А.С. Иванова, кандидат с.-х. наук *A.S. Ivanova*

ФГБОУ ВПО «Государственный аграрный университет Северного Зауралья» "State Agrarian University of Northern Zauralye"

Аннотация. Изучено влияние Биоплексов Цинка и Меди на переваримость питательных веществ и молочную продуктивность коров. Использование в кормлении Биоплексов позволяет повысить переваримость питательных веществ корма и продуктивность лактирующих коров.

Summary. The effect of zinc and copper Biopleksov on nutrient digestibility and milk production of cows. Use in feeding Biopleksov improves nutrient digestibility and feed efficiency of lactating cows.

Ключевые слова: Биоплексы, лактирующие коровы, переваримость питательных веществ, молочная продуктивность.

Keywords: Biopleksy, milking cows, nutrient digestibility, milk productivity.

Актуальность. Ученые во всем мире постоянно изучают болезни обмена веществ высокопродуктивных животных: белкового, углеводного, липидного, витаминного и минерального. По мнению большинства, среди причин такой патологии, а также снижения продуктивности животных на первом месте стоит несбалансированное кормление [1; 2].

Известно, что в поддержании здоровья высокопродуктивных животных важное значение имеет сбалансированное минеральное питание. В связи с этим, одной из главных задач научного поиска является повышение биологической доступности микроэлементов. Доказано, что в желудочно-кишечном тракте животных соли минеральных веществ не усваиваются полностью, в то время как хелатные соединения биогенных элементов с органическими лигандами проявляют разные виды биологической активности и полностью усваиваются. Эти свойства хелатных соединений делают их привлекательными для теории и практики кормления [3].

Благодаря естественным препаратам в последние два десятка лет заметна тенденция увеличения продуктивности животных. Одним из таких препаратов являются Биоплексы — органические комплексы микроэлементов с аминокислотами и пептидами. Преимущество Биоплексов было неоднократно показано в научно-практических испытаниях на свиньях и птице. Препараты с органическими формами цинка и меди наиболее приемлемы, но недостаточно изучены [6].

Поэтому нами была поставлена задача изучения влияния скармливания органических форм цинка и меди на переваримость питательных веществ корма и молочную продуктивность коров.

Материал и методика исследований. Для этого был проведен научно - производственный опыт в учебно-опытном хозяйстве ТГСХА на коровах черно-пестрой породы. Было сформировано 2 группы по 10 голов в каждой, с учетом возраста, живой массы, уровня продуктивности и физиологического состояния. Условия содержания, фронт кормления и поения, параметры микроклимата во всех группах были одинаковы. Учет задаваемых кормов проводился ежедневно, поедаемость кормов – раз в декаду, за два смежных дня. Рационы кормления коров нормировались с учетом химического состава и питательности кормов на основе норм, рекомендуемых РАСХН. Кормление коров было одинаковым по детализированным нормам [5].

Объемистые корма коровы получали в виде кормосмеси в составе: силоса кукурузного 55%, сенажа злаково-бобового — 32%, плющеной зерносмеси — 8 и сена злакового — 5% по массе. Коровы опытной группы дополнительно к основному рациону получали Биоплекс Цинка в дозе 3,6 г/гол в сутки и Биоплекс Меди в дозе 0,69 г/гол в сутки. Дозы ввода солей микроэлементов устанавливали по разнице между нормой РАСХН и фактическим содержанием микроэлементов в кормах рационов.

Результаты исследований. Общая питательность рационов, рассчитанная с учетом коэффициентов переваримости, составила 18,04 и 19,35 ЭКЕ. В 1 кг сухого вещества рациона содержалось: в контрольной группе 1,06 ЭКЕ, в опытной — 1,12 ЭКЕ. Концентрация обменной энергии в сухом веществе рациона коров была высокой — в контрольной 10,57 МДж, в опытной — 11,7 МДж.

Питательность кормов, независимо от того, чем она выражается, устанавливают по наличию в них основных питательных веществ. В частности сырого протеина, сырого жира, сырой клетчатки и БЭВ с учетом их переваримости. Кроме того, высокопродуктивные животные нуждаются в высоком содержании обменной энергии в рационах, особенно остро в первые 100 дней лактации, когда корова дает около 50% валовой продукции [4].

Для изучения переваримости и использования питательных веществ рационов нами был проведен физиологический опыт на 6 коровах — аналогах. Каждому животному корм задавался индивидуально.

Важным показателем использования животными питательных веществ потребленных кормов являются коэффициенты переваримости, которые представляют собой отношение переваренных питательных веществ к потребленным, выраженное в процентах. В таблице 1 приведены данные коэффициентов переваримости питательных веществ в среднем по группе.

Животные опытной группы, получавшие органические формы цинка и меди в виде Биоплексов больше переварили сухого вещества на 1,9%, органического – на 6,3 (P<0,05), сырого протеина – на 2,7, сырого жира – на 11,4 (P<0,01), сырой клетчатки и БЭВ – на 4,2% (P<0,05) по сравнению с аналогами контрольной группы.

Таблица 1 – Коэффициенты переваримости питательных веществ, % (\overline{X}_{\pm} S $\overline{\chi}$)

Показатель	Группа	
	контрольная	опытная
Сухое вещество	68,12±1,22	70,09±1,74
Органическое вещество	69,18±1,27	75,52±1,84*
Сырой протеин	66,06±1,64	68,75±2,06
Сырой жир	73,65±1,59	85,06±1,03**
Сырая клетчатка	60,02±1,28	64,24±1,45*
БЭВ	72,56±0,94	76,85±1,71*

Анализируя в целом коэффициенты переваримости питательных веществ можно отметить, что эффективность использования питательных веществ корма у животных была высокая. Коэффициенты переваримости сухого вещества у коров оказались больше 68%. Вероятно, это обусловлено скармливанием животным не отдельных кормов, а приготовленных на их основе многокомпонентных смесей. Поедаемость приготовленных с помощью кормосмесителей кормов увеличивается на 20-30%.

Одним из основных критериев, позволяющих оценить сбалансированность и полноценность кормления, а также изучить продуктивное действие кормовых добавок в молочном скотоводстве, служит молочная продуктивность коров [7].

Результаты опыта показали, что коровы опытной группы, получавшие органические формы микроэлементов, более полно проявили свой генетический потенциал и эффективнее использовали питательные вещества рациона на производство молока. Данные, характеризующие молочную продуктивность коров за период опыта, приведены в таблице 2.

Таблица 2 – Молочная продуктивность коров за первые 90 дней лактации, ($ar{X}$ ±S $ar{\chi}$)

Показатель	Группа	
ПОказатель	контрольная	опытная
Удой за 90 дней лактации, кг:		
натуральной жирности	2120,30±90,46	2410,00±131,62
4 % жирности	2146,50±84,32	2560,60±104,31
Среднесуточный удой, кг		
натуральной жирности	23,56±0,90	26,78±1,42
4 % жирности	23,85±0,70	28,45±1,02**
Массовая доля жира, %	4,05±0,11	4,25±0,11
Молочный жир, кг	85,87±2,39	102,43±3,45**
Массовая доля белка, %	3,11±0,05	3,17±0,03
Молочный белок, кг	65,94±5,51	76,4±5,78**

Здесь и далее *P<0.05: **P<0.01: ***P<0.001

Животные опытной группы превосходили своих аналогов контрольной группы по молочной продуктивности и за первые 90 дней лактации от них надоено на 13,7% больше молока натуральной жирности.

У животных, получивших в течение опытного периода Биоплексы, был достоверно больше выход молочного жира на 16,56 кг, или на 19,28% (P<0,01), а молочного белка на 10,46 кг, или на 15,86% (P<0,01).

Вывод. Таким образом, применение Биоплексов Цинка и Меди в кормлении высокопродуктивных коров способствует лучшему усвоению питательных веществ корма и повышению молочной продуктивности животных.

Библиографический список:

- 1. Архипов, А.В. Высококачественные корма основа успеха в молочном скотоводстве / А.В. Архипов, Л.В. Топорова // Вестник Брянской ГСХА. Брянск, 2010. № 3. С. 3-23.
- 2. Топорова, Л.В. Сбалансированное кормление высокопродуктивных животных основа профилактики и лечения нарушений обмена веществ / Л.В. Топорова, А.В. Архипов, И.В. Топорова, В.В, Андреев // Организация кормопроизводства и сбалансированного кормления крупного рогатого скота в хозяйствах Московской области

по фактической питательности кормов: Материалы научно-производственного семинара, Дубровцы, ВИЖ. – 2010. – С. 51 -62.

- 3. Селионова, М.И. Использование хелатов микроэлементов с аминокислотами в молочном скотоводстве / М.И. Селионова, Е.М. Головкина // Агропромышленный портал юга России. 2011. [Электронный ресурс] Режим доступа к журналу: http://agroyug.ru
- 4. Харитонов, Е. Оптимизация питания высокопродуктивных молочных коров / Е. Харитонов // Молочное скотоводство. 2004. №4. –С.29-30.
- 5. Нормы и рационы кормления сельскохозяйственных животных / ред. А.П. Калашников и [и др.]. Справочное пособие. 3-е издание переработанное и дополненное. М., 2003. 456 с.
- 6. Надеев, В. Эффективность использования органической формы меди в рационах откармливаемых свиней / В. Надеев, М. Чабаев, Р. Некрасов, Ю. Клементьева, М. Клементьев // Главный зоотехник. 2012. № 5. –С. 22-26.
- 7. Кирилов, М. Премиксы для коров на Камчатке / Н. Кирилов, В. Виноградов, В. Зотеев // Молочное и мясное скотоводство. 2007. № 5. С. 15 16.

УДК636.034:636.22:636.234.1

ВЛИЯНИЕ КОРМЛЕНИЯ ГОЛШТИНСКИХ КОРОВ НА ИХ ПРОДУКТИВНОСТЬ В УСЛОВИЯХ ПРИГОРОДНОГО РАЙОНА Г. РЯЗАНИ

Influence of Holstein Cows Feeding on Their Productivity in a Suburb District of Ryazan

Н.И. Торжков, доктор с.-х. наук, профессор, Л.М. Захаров, М.В. Захаров, магистр *N.I. Torzhkov,L. M. Zaharov, M.V. Zaharov*

ФГБОУ ВПО «Рязанский государственный агротехнологический университет имени П.А. Костычева» «Ryazan State Agrotechnological University Named after P.A. Kostychev» ol-zahar.ru@yandex.ru

Аннотация: Наиболее существенным фактором, влияющим на продуктивность коров, является кормление. Имея многие достоинства голштинские коровы требовательны к кормам, что требуется учитывать при составлении рационов. Так, сбалансированное полноценное кормление способствует росту продуктивности дойных коров, которая в среднем составляет около 6500 кг.

Ключевые слова: голштинские коровы, рацион кормления, силос, сенаж, комбикорм.

Abstract: The most significant factor influencing cows' productivity is feeding. Having got many advantages Holstein cows are particular about the fodder that is necessary to consider when composing a diet. So the full balanced fodder promotes milking cows' productivity growth that is about 6500 kg at the farm on the average.

Key words: Holstein cows, diet, silage, haylage, mixed fodder.

Голштинский скот из Дании был завезен в Рязанскую область в 1996 году и в настоящее время многие хозяйства специализируются на выращивании этой породы [1]. Голштинский скот обладает многими достоинствами, в первую очередь — высокой продуктивностью. Однако, по данным [3], порода имеет и недостатки — высокая требовательность к кормам. Бесперебойное полноценное кормление коров является необходимым условием получения от них высокой молочной продуктивности[2]. Однако потенциал продуктивности крупного рогатого скота в нашей стране используется пока на 50-60 %. И это обусловлено, в первую очередь, низким, несбалансированным уровнем кормления коров.

Цель исследований — изучение влияния кормления голштинских коров на ихпродуктивность. Исследования проводились в ООО «Авангард» Рязанского района Рязанской области в животноводческом комплексе п. Стенькино, расположенного в пригороде г. Рязани, на котором содержится 380 голов дойных коров. Содержание летом пастбищное, зимой — стойловое. Скармливание зеленых кормов и пастбищной растительности в весенне-летний периоды, а в зимний - доброкачественных силосованных кормов и сенажа в хозяйстве позволяет получать молоко, обогащенное каротином и витамином "А". Корма, используемые в хозяйстве, собственного производства, включая комбикорм (рисунок 1).

В хозяйстве в соответствии с планом кормления голштинских коров на осенне-зимний период 2014-15 гг. на 1 дойную в день приходится 5,2 кг муки фуражной, 18 — силоса кукурузного, 1,07 — соломы, 14 — сенажа, 2,5 — сена лугового и 5,2 кг комбикорма. Расчёты показывают, что в рационе выше нормы содержится 20,9 к.ед. (+2%) и обменной энергии — 263 МДЖ (+9,6%); сырого протеина 4190 г, или 113%; переваримого протеина 2611 г, или 101%. Аналогичная картина наблюдается и по содержанию в рационе сахара, сырого жира, сырой клетчатки, макроэлементам, каротину и витаминам D, Е. Количество получаемого коровами крахмала с кормами немного ниже нормы (-3,6%). Рационы ко-