ская-86» 250 кг/га, отклонение фактической нормы высева от заданной не превысило 1,5%, а доля семян, находящихся в слое 5 ± 1 см составила 91,2%. Коэффициент вариации, характеризующий равномерность распределения семян по площади рассева, составил 38,2%.

Библиографический список

- 1. Структурная оценка энергосберегающей технологии возделывания зерновых культур и рабочих органов посевных машин / Н.П. Ларюшин, А.В. Мачнев, М.А. Ларин, А.Н. Хорев // Нива Поволжья. 2011. №2. С. 72-79.
- 2. Мачнев, А.В. Обзор и анализ конструктивных схем сошников зерновых сеялок / А.В. Мачнев, М.А. Ларин // Вклад молодых ученых в инновационное развитие АПК России: Сб. мат. Всерос. научно-практ.

- конф. Пенза: РИО ПГСХА, 2010. 251с.
- 3. Методика лабораторных исследований по обоснованию конструктивных параметров лапового сошника с направителемраспределителем/ Н.П. Ларюшин, А.В. Мачнев, М.А. Ларин, П.Н. Хорев // Вклад молодых ученых в инновационное развитие АПК России: Сб. мат. Всерос. научно-практ. конф., т. 2 Пенза: РИО ПГСХА, 2011. С. 112–114.
- 4. Мельников, С.В. Планирование эксперимента в исследованиях сельскохозяйственных процессов / С.В. Мельников, В.Р. Алёшкин, П.М. Рощин. Л.: Колос, 1980. 168 с.
- 5. Любушко, Н.И. Методика расчёта и определения равномерности распределения семян зерновых культур по площади / Н.И. Любушко.— М.: ОНТИ ВИСХОМ, 1970. 16 с.

УДК 697.94

ПРИМЕНЕНИЕ ТЕПЛОВЫХ НАСОСОВ ДЛЯ ОБОГРЕВА ЖИВОТНОВОДЧЕСКИХ ПОМЕЩЕНИЙ

Петров Алексей Михайлович, преподаватель кафедры «Энергообеспечение сельского хозяйства»

ФГБОУ ВПО «Тюменская государственная сельскохозяйственная академия». 625001. г. Тюмень, ул. Ямская, д. 52, кв. 3. Тел.: 89097384345 e-mail: darker2012@yandex.ru

Ключевые слова: утилизация теплоты, микроклимат, животноводческое помещение, тепловые насосы.

В статье приведены данные по анализу способов обогрева и теплопотерь в животноводческих помещения, приведены доводы в пользу внедрения теплоутилизирующего оборудования и сделан соответствующий вывод.

Совершенствование технологических процессов в животноводстве влечет за собой увеличение энергетических затрат и необходимость улучшения качества энергоснабжения предприятий данных отраслей. Особенно быстро растет потребление газа и электроэнергии: их доля в энергобалансе повысилась более чем в 1,5 раза по сравнению с прошлым десятилетием [10].

Если учитывать, что треть потребляемой энергии в животноводстве тратится на создание оптимальных параметров микроклимата, а стоимость энергоресурсов постоянно повышается, то появляется проблема поиска более экономичных и энергосберегающих способов обогрева помещений [1].

Из расчета теплового баланса животноводческого помещения в зимний период,

приведенного ниже, и анализа теплопотерь (рисунок 1) следует, что 8% теплоты расходуется на вентиляцию помещения, так как теплый загрязненный воздух, удаляемый вентиляторами, как правило, не утилизируется.

В настоящее время для поддержания оптимального температурно-влажностного режима животноводческого помещения разработано достаточное количество регенеративных и рекуперативных теплоутилизаторов, в том числе Агровент, ПВУ, РТМ и др. При ряде преимуществ в использовании, они обладают и недостатками – низкая доля возвратной теплоты, небольшой срок службы [2].

Одним из наиболее перспективных направлений энергосбережения является исполь-

зование тепловых насосов, которые лишены недостатков утилизаторов и используют низкопотенциальную теплоту артезианских скважин, земли, а также утилизируемого в животноводческих помещениях теплого воздуха [3].

В ряде северных стран Европы, в США и Канаде тепловые насосы применяют для обогрева помещений социального и культурно-бытового назначения. Доказано, что при снижении температуры наружного воздуха [4, 8] экономичность тепловых насосов повышается. Однако сведения об использовании тепловых насосов в животноводстве и птицеводстве в научной литературе отсутствуют. В условиях северных широт при температурах атмосферного воздуха ниже -31°C недостаточно использования только теплоты, выделяемой животными. В связи с этим необходимо предусмотреть применение отопительных устройств для покрытия дефицита теплоты. До конца XX века в Российской Федерации тепловые насосы применяли лишь на разработке нефтяных месторождений и в тяжелой промышленности. Это связано с недостатками используемых в тепловых насосах хладагентов, что

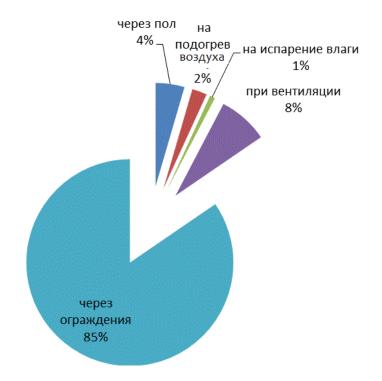


Рис. 1 - Составляющие потерь теплоты животноводческого помещения в зимний период

снижало количество вырабатываемой тепловой энергии. В настоящее время список пригодных к применению в данных установках хладагентов расширился, что дало возможность использовать тепловые насосы в сельском хозяйстве.

Поэтому цель проведенных исследований - определение основных параметров тепловых насосов «воздух - воздух» и использование их для утилизации воздуха в телятнике. К основным параметрам теплового насоса относят: коэффициент преобразования, температуру подаваемых в испаритель внутреннего, а в конденсатор наружного воздуха, а также выходящего из конденсатора и из испарителя воздуха [5].

Для проведения исследований использовали тепловой насос «воздух - воздух» серии PH-060 5GC мощностью 15,5 кВт, цифровые термогигрометры ИВА-6 с погрешностью измерений температуры ±0,5°C и относительной влажности ±1%, цифровые термометры «IN-OUTDOOR» с погрешностью измерений температуры ±1°C.

После проведения на лабораторной теплонасосной установке эксперимента была определена зависимость температуры конденсатора установки и температуры

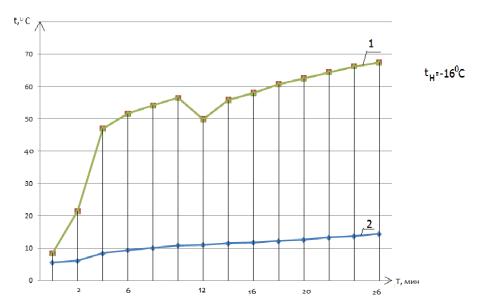


Рис. 2 – Зависимость температуры помещения от температуры испарителя теплового насоса: 1 – температура конденсатора; 2 – температура помещения

Рис. 3 — Зависимость коэффициента преобразования от времени работы теплового насоса

воздуха помещения от времени на обогрев помещения при температуре окружающей среды 16°C (рисунок 2).

Анализ рисунка 2 показывает, что тепловой насос повышает температуру помещения объемом 105 м³ до заданной НТП 1-77СХ (12°С) за 14 минут. Конденсатор нагревался до температуры, необходимой для полезной работы установки за 6 минут. Через 12 минут после начала работы в помещение был добавлен наружный воздух, в результате чего температура конденсатора резко упала, но температура помещения из-

менилась незначительно. Данный факт указывает на возможность добавления наружного воздуха в рециркуляционный воздух системы отопления с минимальным изменением показателей микроклимата. За 10 минут, начиная с 16 минуты работы установки, тепловой насос испаритель разогрел до прежней температуры, что свидетельствуэффективности ет об работы оборудования. Коэффициент преобразования затраченной электрической энергии в тепловую, характеризующий эффективность энергосбережения (рисунок 3), составил 1,3 (максимальный может составить 3...4), что подтверждает энергосберегающие возможности установки [6, 10].

На рисунке 3 показана кривая изменения коэффициента преобразования при включении установки в точке 2 и при дальнейшей её работе. Проанализировав рисунок, можно отме-

тить, что для входа теплонасосной установки в рабочий режим ей необходима большая мощность преобразования, и, как следствие, значительная разность между температурами испарителя и конденсатора [7].

На рисунке 4 показана зависимость эффективности энергосбережения от температуры наружного воздуха, которая изменялась в пределах от -16°C до -20°C.

Для используемой теплонасосной установки верхняя граница её работы будет составлять -20 °С, поскольку при данной температуре начинает закипать используе-

Рис. 4 — Зависимость эффективности энергосбережения от температуры наружного воздуха

мый в тепловом насосе хладагент R22. Поэтому для данного помещения максимальная эффективность энергосбережения 29 % достигается при температуре наружного воздуха -20°С. Учитывая то, что в дальнейшем тепловой насос будет находиться в помещении, где в холодный период года температура будет колебаться от -15 °С до -20 °С, применение данной установки можно считать оправданным.

Предварительный технико-экономический расчет по известной методике [9 - 10] показал, что даже при неблагоприятных условиях применение теплонасосной установки в зимний период экономически выгодно, поскольку позволяет исключить часть затрат, приходящихся на систему обогрева животноводческого помещения.

Библиографический список

- 1. Возмилов, А.Г, Михайлов П.М. Электроочистка и электрообеззараживание воздуха в технологических процессах животноводства и птицеводства (монография). Тюмень, ТГСХА, 2009. 234c.
- 2. Михайлов, П.М., Матвеев С.Д., Аглиуллин У.Г. Методика расчетов и выбора теплоэнергетических установок и систем сельского хозяйства. Тюмень, ТГСХА, 2010.

- 280c.
- 3. Агеев, А.М. Резервы энергосбережения в свиноводстве // Вестник ФГОУ ВПО МГАУ. Вып. 5. М., 2003. 157 с.
- 4. Амерханов, Р.А. Тепловые насосы. М.: Энергоатомиздат, 2005. 159с.
- 5. Амерханов, Р.А., Гарькавый К.А., Шевчук И.В. Решение задачи воздухообмена в животноводческом помещении: Энергообеспечение и энергосбережение в сельском хозяйстве. Энергосберегающие технологии

в животноводстве и стационарной энергетике. - М.: ГНУ ВИЭСХ, 2003. - С. 380 - 385.

- 6. Ахундов, Д.С, Мурусидзе Д.Н., Чугунов А.И., Ерохина Л.П., Зайцев А.М. Микроклимат животноводческих помещений и энергосбережение //Механизация и электрификация сельского хозяйства. 1997- № 12. -С. 9 13.
- 7. Ачапкин, М.М. Энергосберегающая система вентиляции для животноводческих помещений / Тракторы и сельскохозяйственные машины.- 2003.- № 5. С. 18 19.
- 8. Бородин, И.Ф., Рудобашта С.П., Самарин В.А., Самарин Г.Н. Энергосберегающие технологии формирования оптимального микроклимата в животноводческих помещениях. // Науч. тр. ВИМ, т. 142, ч. 2. М.: ВИМ, 2002. С.
- 9. Таранов, М.А. Оценка экономической эффективности агроинженерных проектов: монография / М.А. Таранов, В.Я. Хорольский, Д.В. Петров. Зерноград: Издательство Азово-Черноморский ГАА, 2009. 213 с.
- 10. Петров, Д.В., Петров А.В., Ушкур Д.Г. Повышение эффективности тепловых насосов. Механизация и электрификация сельского хозяйства № 9, 2011 г.