син, А.В. Зорин. - Самара. - 2005. - 581 с.

2. Гилевич, С.И. Научные основы сберегающего земледелия степных районов Казахстана. //Вестник сельскохозяйственной науки Казахстана.-Алматы: «Бастау»,

2011. - C.35-41.

3. Федотов, В.А. Рапс России / В.А. Федотов, СВ. Гончаров, В.П. Савенков. — Москва: Агролига России, 2008.- 336 с, ил. — (Современное сельское хозяйство России).

УДК 633.162:631.559.631.82

УРОЖАЙНОСТЬ И ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА ПИВОВАРЕННОГО ЯЧМЕНЯ В ЗАВИСИМОСТИ ОТ ПРИМЕНЕНИЯ МАКРО – И МИКРОУДОБРЕНИЙ В УСЛОВИЯХ ЮГА НЕЧЕРНОЗЕМЬЯ

Ахметов Шамиль Исмятуллович, доктор сельскохозяйственных наук, профессор кафедры почвоведения, агрохимии и земледелия;

Моисеев Анатолий Андреевич, доктор сельскохозяйственных наук, профессор кафедры почвоведения, агрохимии и земледелия;

Павлинов Александр Владимирович, аспирант кафедры почвоведения, агрохимии и земледелия;

Замотаева Надежда Александровна, кандидат сельскохозяйственных наук, доцент кафедры почвоведения, агрохимии и земледелия;

Иванцов Павел Викторович, кандидат сельскохозяйственных наук,, доцент кафедры почвоведения, агрохимии и земледелия;

Аграрный институт ФБГОУ ВПО «Мордовский государственный университет имени Н. П. Огарева»

430904 Саранск, пос. Ялга, ул. Российская, 31 m. 8(8342) 25–41–92, e-mail: shurjak-xxx@yandex.ru

Ключевые слова: ячмень, минеральные удобрения, препарат ЖУСС, структура урожая, урожайность, технологические свойства.

Изложены результаты изучения влияния препарата ЖУСС и минеральных удобрений на формирование урожайности, качества и технологических свойств пивоваренного ячменя.

Ячмень широко используется в технических и кормовых целях, из него производят различные продукты питания [1, 4]. Однако наиболее экономически выгодно использовать ячмень как сырьё для пивоваренной промышленности [2, 3]. В связи с этим разработка приемов технологии возделывания пивоваренного ячменя, обеспечивающих получение зерна, пригодного для солодоращения и пивоварения, является актуальной задачей.

Цель исследований изучить влияние обработки посевов препаратом ЖУСС на фоне различных доз минеральных удобре-

ний на урожайность пивоваренного ячменя и его технологические свойства.

Условия и методика. Исследования проводились в 2009—2011 гг. в учхозе МГУ им. Н. П. Огарева. Почва участка — чернозем выщелоченный тяжелосуглинистый среднегумусный среднемощный. В пахотном слое почвы перед закладкой опыта содержалось гумуса — 7,3 %, подвижных форм фосфора, калия (по Кирсанову) — 155 и 164 мг/кг почвы соответственно. Гидролитическая кислотность равнялась 7,3 ммоль/100 г почвы, сумма поглощенных оснований — 37,3 ммоль/100 г почвы, степень насыщенности

Таблица 1 Влияние удобрений на структуру урожая и морфометрические показатели ячменя (среднее за 2009–2011 гг.)

Вариант Обработка микроэлемен- тами (фактор А)	опыта Доза ми- неральных удобрений (фактор В)	Число рас- тений, шт./м²	Число продук- тивных стеблей, шт./м²	Продук- тивная кусти- стость	Длина колоса, см	Число зерен в коло- се, шт.	Высота растений, см	Масса 1 000 зерен, г
Без обработки	$N_0 P_0 K_0$	288	351	1,2	6,0	19,5	55,0	37,8
	N ₆₀ P ₄₅ K ₄₅	309	378	1,2	6,3	20,7	57,9	38,5
	N ₇₆ P ₄₅ K ₆₀	319	393	1,2	6,3	21,3	58,9	39,4
	N ₁₀₁ P ₅₆ K ₇₅	328	397	1,2	6,3	21,8	59,6	40,3
	N ₁₂₆ P ₆₈ K ₁₀₀	316	401	1,3	6,8	21,9	62,5	39,3
С обработкой	$N_0 P_0 K_0$	304	358	1,2	5,8	19,8	55,2	38,6
	N ₆₀ P ₄₅ K ₄₅	311	384	1,2	6,3	21,2	59,7	39,3
	N ₇₆ P ₄₅ K ₆₀	323	400	1,3	6,4	21,4	60,2	40,2
	N ₁₀₁ P ₅₆ K ₇₅	341	409	1,2	6,3	22,2	62,0	41,1
	N ₁₂₆ P ₆₈ K ₁₀₀	328	408	1,3	7,0	22,1	63,7	40,0
НСР ч. р. 1		29	23	0,2	0,4	1,5	3,8	0,9
НСР ч. р. 2		23	16	0,1	0,8	0,9	3,5	0,6
HCP (A)		$F_{\phi} < F_{\tau}$	$F_{\phi} < F_{\tau}$	$F_{\phi} < F_{\tau}$	$F_{\phi} < F_{\tau}$	$F_{\phi} < F_{\tau}$	$F_{\phi} < F_{\tau}$	0,4
HCP (B)		16	11	F _o <f<sub>t</f<sub>	0,6	0,7	2,5	0,4

почвы основаниями – 83,6 %; pH_{сол} – 5,3.

В опыте высевали пивоваренный ячмень сорта Зазерский 85. Норма высева — 5 млн. шт. всхожих семян на гектар. Предшественник — кукуруза на силос.

Опыт двухфакторный. Расположение вариантов в опыте — рендомизированное, факторов — методом расщепленных делянок, повторность — трехкратная.

Фактор А (обработка микроэлементами) изучался в двух вариантах: 1-й — контроль (без обработки), 2-й — с обработкой препаратом ЖУСС (содержащий микроэлементы Си и В) в дозе 1,0 л/га в фазу выхода в трубку. ЖУСС — концентрированный жидкий удобрительный состав, предназначенный для предпосевной обработки семян, внекорневой подкормки растений, содержит соединения меди и бора в биологически активной (легкоусвояемой растениями) форме (хелаты). Массовая концентрация меди 33—38 г/дм³, бора 5,5—5,7 г/дм³, плотность при 20 °С не менее 1100 кг/м³, водородный показатель рН 9—11.

Фактор В (дозы минеральных удобрений с различным возмещением затрат N, P, K, рассчитанный от полной дозы $(N_{126}P_{45}K_{125})$ на планируемую урожайность 5 т/га) изучался в пяти вариантах: 1-й – контроль N₀P₀K₀; 2-й — $N_{60}P_{45}K_{45}$ (рекомендованная доза для Мордовии); 3-й — $N_{76}P_{45}K_{60}$ (компенсация выноса N 60%, Р 100%, К 40 %); 4-й – N₁₀₁P₅₆K₇₅ (компенсация выноса N 80% P 125% K 60 . %); 5-й — N₁₂₆P₆₈K₁₀₀ (компенсация выноса N 100% Р 150% К 80%). Общая площадь опытного участка 5 500 м². Делянки первого порядка (обработка микроэлементами) имели площадь $600 \text{ м}^2 (30 \times 20 \text{ м})$, второго (дозы минеральных удобрений – 120 M^2 (4 × 30 м), учетная площадь делянки -104,4 м 2 (3,6 \times 29 m).

Опыты и исследования выполнены в соответствии с методическими указаниями Б. А. Доспехова (1989) и Государственной комиссии по сортоиспытанию сельскохозяйственных культур (1971).

Результаты и их обсуждение. Применение препарата ЖУСС не повлияло на

Урожайность ячменя

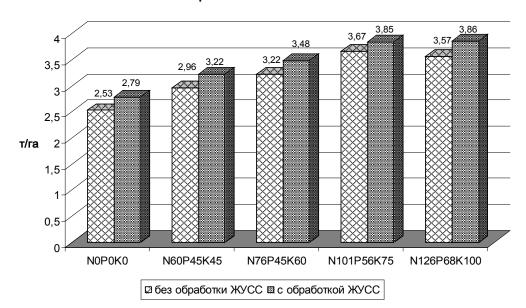


Рис.1 – Влияние удобрений на урожайность ячменя, т/га (среднее за 2009–2011гг.)

густоту стояния посевов (табл. 1). Максимальное число растений было зафиксировано на варианте обработанном препаратом ЖУСС с применением дозы минеральных удобрений $N_{101}P_{56}K_{75}$ (341 шт./м²). Число продуктивных стеблей не зависело от обработки ЖУССом, а определялось только дозой внесенного минерального удобрения и изменялось с 351 шт./м² (на контроле) до 409 шт./м² на варианте $N_{101}P_{56}K_{75}$ с применением препарата ЖУСС.

Аналогичная зависимость была отмечена и при изучении длины колоса, числа зерен в колосе и высоты растений.

Изучаемые факторы не оказали влияния на продуктивную кустистость.

Обработка препаратом ЖУСС в совокупности с минеральными удобрениями оказало влияние на высоту растений ячменя. Минимальное значение данного показателя было зафиксировано на абсолютном контроле (55 см), максимальное на варианте с применением дозы $N_{126}P_{68}K_{100}$ на фоне обработки посевов препаратом ЖУСС (63,7 см).

Исследуемые факторы повлияли на массу 1 000 зерен, увеличив её с 37,8 г (контроль) до 41,1 г при внесении $N_{101}P_{56}K_{75}$ с обработкой посевов микроэлементами. Этот показатель оказал значительное влияние на

урожайность культуры.

Дополнительные расчеты показали, что действие отдельных элементов минерального питания на показатели структуры урожайности ячменя (в среднем за 3 года исследований) выражалось следующими уравнениями множественной линейной регрессии:

ЧПС = 352,80 + 7,600Ж + 0,933N + 0,055P - 0,692K; R = 0,911;

43 = 19,56 + 0,293X+ 0,081N - 0,003P - 0,076K +; R = 0,882;

 $M_{1000} = 37,91 + 0,796 + 0,197 - 0,040 - 0,204 + ; R = 0,909;$

где ЧПС — число продуктивных стеблей, шт./м²; ЧЗ — число зерен в колосе, шт.; $M_{1\,000}$ — масса 1 000 зерен, г; Ж — доза препарата ЖУСС (1 л/га); N, P, K — дозы соответствующих форм удобрений, кг/га д.в.; R — коэффициент множественной корреляции.

Экспериментальные данные и вычисленные на их основании уравнения регрессии свидетельствуют о том, что опрыскивание посевов препаратом ЖУСС и применение азотных удобрений способствовало увеличению числа продуктивных стеблей на единицу площади, количество зерен в колосе и массу 1 000 зерен. Действие фосфора положительно сказывалось только на число продуктивных стеблей.

Таблица 2 Влияние удобрений на показатели качества зерна ячменя (среднее за 2009 – 2011 гг.)

Вариант опыта				Пленча-	Экс-			
Обработка микро- элементами (фактор А)	Доза ми- неральных	Белок	Крахмал	тость	трактив- ность	Натурная масса, г/л	Прорастае-	
	удобрений (фактор В)		% на сухое	Macca, 1771	MOC15, 70			
Без обработки	N ₀ P ₀ K ₀	12,8	61,4	10,4	75,2	647	95,0	
	N ₆₀ P ₄₅ K ₄₅	14,0	60,0	10,9	73,3	652	95,0	
	N ₇₆ P ₄₅ K ₆₀	14,5	59,4	10,3	73,5	653	95,0	
	N ₁₀₁ P ₅₆ K ₇₅	14,8	59,2	11,0	72,5	650	95,0	
	N ₁₂₆ P ₆₈ K ₁₀₀	15,9	57,6	11,2	71,3	645	95,0	
С обработкой	N ₀ P ₀ K ₀	12,9	61,2	10,4	75,0	651	94,7	
	N ₆₀ P ₄₅ K ₄₅	14,1	60,0	10,9	73,2	657	95,7	
	N ₇₆ P ₄₅ K ₆₀	14,0	59,9	10,9	73,4	643	95,0	
	N ₁₀₁ P ₅₆ K ₇₅	15,1	58,6	11,3	71,9	655	95,0	
	N ₁₂₆ P ₆₈ K ₁₀₀	15,5	58,2	11,3	71,5	646	96,0	
НСР ч. р. 1		0,9	1,4	0,4	1,0	$F_{\phi} < F_{\tau}$	0,6	
НСР ч. р. 2		0,7	0,6	0,6	0,9	$F_{\phi} < F_{\tau}$	0,5	
HCP (A)		$F_{\phi} < F_{\tau}$	$F_{\phi} < F_{\tau}$	0,2	$F_{\phi} < F_{\tau}$	$F_{\phi} < F_{\tau}$	$F_{\phi} < F_{\tau}$	
HCP (B)		0,5	0,4	0,4	0,6	$F_{\phi} < F_{\tau}$	0,3	

Установлено, что урожайность зерна пивоваренного ячменя зависела как от обработки посевов микроэлементами, так и от дозы внесенных минеральных удобрений (рис. 1). В среднем за 3 года исследований наиболее урожайными оказались варианты с обработкой посевов препаратом ЖУСС и применением минеральных удобрений в дозе $N_{101}P_{56}K_{75}$ и $N_{126}P_{68}K_{100}$ (3,85 т/га и 3,86 т/га прирост урожайности к контролю 52 %).

Действие отдельных элементов минерального питания на урожайность зерна и соломы ячменя (в среднем за 3 года исследований) выражалось следующими уравнениями регрессии:

 $y_c = 2,008 + 0,170 \text{ H} + 0,053 \text{ N} + 0,010 \text{ P} - 0,067 \text{ K}$; R² = 0,917;

где $У_{_3}$ — урожайность зерна, т/га; $У_{_{\rm c}}$ — урожайность соломы, т/га; Ж — доза пре-

парата ЖУСС (1 л/га); N, P, K — дозы соответствующих форм удобрений, кг/га д.в.; R^2 — коэффициент детерминации.

Из приведенных уравнений видно, что ведущая роль в повышении урожайности зерна и соломы ячменя принадлежала обработке препаратом ЖУСС и азоту минеральных удобрений. На почвах, хорошо обеспеченных подвижными формами фосфора применение фосфора в составе минеральных удобрений оказало влияние только на урожайность соломы.

Применение препарата ЖУСС не оказало существенного влияния на такие показатели качества, нормируемые ГОСТ 5060–86, как содержание белка, крахмала, экстрактивность и прорастаемость, их значение находилось в пределах ошибки опыта (табл. 2).

Увеличение количества вносимых удобрений повлекло за собой повышение со-

Таблица 3 Влияние удобрений в варьировании величины и показателей качества ячменя

	Долевое участие фактора в варьировании (η², %)							
Фактор	Урожайности		Содержание в зерне		Плен-	Про- раста	Экс- трактив	Массы
	Зерна	Соло- мы	Белка	Крах- мала	зерна	-емо- сти	-ности зерна	1 000 зерен
Обработка микроэлементами (фактор A)	8,5	6,3	0,2	0	6,1	13,0	0,5	18,3
Дозы минеральных удобрений (фактор B)	91,3	93,0	97,4	96,7	84,6	43,5	98,6	81,7
Взаимодействие факторов микроэлементы × минеральные удобрения (АВ)	0,2	0,7	2,4	3,3	9,3	43,5	0,9	0

держания белка в зерне с 12,9% (контроль) до 15,5% с внесением ${\sf N}_{\sf 126}{\sf P}_{\sf 68}{\sf K}_{\sf 100}$ и обработкой ЖУССом

Следует отметить, что за период исследования содержание белка в зерне ячменя на всех изучаемых вариантах (включая контроль) превышало требования ГОСТа на пивоваренный ячмень. Аналогичные результаты получены другими исследователями [8].

Содержание крахмала (К) в зерне ячменя уменьшалось с увеличением дозы удобрений и находилось в тесной обратной связи (r = -0.985) с содержанием белка в зерне (Б). Эта зависимость выражалась следующим уравнением регрессии: $K_{(2009-2011\ rr)} = 76,03 - 1,1475$

Экстрактивность зерна культуры изменялась в зависимости от дозы вносимых удобрений — чем она больше, тем меньше величина данного показателя как на фоне обработки микроэлементами, так и без нее. Так, максимальное количество крахмала (61,4%) было зафиксировано на контроле, минимальное (57,6%) при внесении $N_{126}P_{68}K_{100}$.

Между экстрактивностью зерна ячменя (E) и массой 1000 зерен (M) также существует средняя обратная зависимость r = -0,682, которая выражалась уравнением

$$(y_{_{9KCTP}} = 109,87 - 0,932x_{_{M 1000}};).$$

Одним из показателей, характеризующих качество зерна пивоваренного ячменя, является пленчатость. Обработка посевов микроэлементами и применение минеральных удобрений способствовало увеличению пленчатости, но не повлияло на натурную массу зерна ячменя.

На прорастаемость зерна ячменя повлияло только внесение минеральных удобрений. Данный показатель повышался с 94,7% (контроль) до 96,6% с применением $N_{126}P_{68}K_{100}$ на фоне обработки микроэлементами.

Нами проведен регрессионный анализ содержания белка, крахмала в зерне и экстрактивности в зависимости от обработки препаратом ЖУСС и доз внесенных минеральных удобрений:

E = 12.81 - 0.086 + 0.012 - 0.007 + 0.017 +

 θ = 75,30 - 0,173H - 0,058H - 0,003H + 0,039H; R = 0,932;

где Б – содержание белка, %; КР – содержание крахмала, %; Э – экстрактивность зерна, %; Ж – доза препарата ЖУСС (1 л/га); N, P, K – дозы соответствующих форм удобрений, кг/га д.в.; R – коэффициент множественной корреляции.

Из приведенных уравнений видно, что обработка микроэлементами и внесение фосфора приводило к снижению белковости зерна ячменя, а внесение азота и калия

в составе полного минерального удобрения способствовало увеличению этого показателя.

Обработка ЖУССом и внесение фосфора способствовало увеличению крахмалистости зерна, а внесение азота и калия отрицательно влияло на нее.

Внесение микроэлементов, азота, фосфора, минеральных удобрений приводило к снижению экстрактивности зерна, а применение калийных удобрений, наоборот, способствовало её увеличению.

Анализ рассеивания экспериментальных данных свидетельствует о том, что основная роль принадлежит внесению минеральных удобрений в варьировании урожайности ячменя, содержания белка, крахмала, экстрактивных веществ, пленчатости и массы 1 000 зерен. Варьирование прорастаемости зерна ячменя почти наполовину определялось внесением минеральных удобрений (43,5%), в меньшей мере — обработкой посевов микроэлементами (13,0%) и на 43,5% взаимодействием факторов.

Заключение

Анализируя вышеизложенные данные, можно сделать вывод, что на черноземе выщелоченном юга Нечерноземья в повышении урожайности и формировании технологических свойств применение препарата ЖУСС существенного влияния не оказывает, ведущая роль принадлежит минеральным удобрениям.

Максимальная урожайность зерна была получена на вариантах с обработкой посевов микроэлементами и внесением минеральных удобрений в дозе $N_{101}P_{56}K_{75}$ и $N_{126}P_{68}K_{100}$ (3,85 т/га и 3,86 т/га соответственно). На этих же делянках отмечены лучшие значения морфометрических показателей:

число растений, число продуктивных стеблей, продуктивная кустистость, длина и число зерен с колоса, высота растений и масса 1 000 зерен. Полученное зерно ячменя отвечает требованиям ГОСТа за исключением содержания белка.

Библиографический список

- 1. Беляков, И.И. Ячмень в интенсивном земледелии / И.И. Беляков. М.: Агропромиздат, 1990. 119 с.
- 2. Булгаков, Н.И. Биохимия солода и пива / Н.И. Булгаков. М.: Пищевая промышленность, 1976. 359 с.
- 3. Меледина, Т.В. Сырье для производства пива: учебное пособие / Т.В. Меледина, И.Е. Радионова. СПб., 2004. 129 с.
- 4. Варламов, В.А. Технологические свойства сортов пивоваренного ячменя в зависимости от приемов возделывания в лесостепи среднего Поволжья / В.А. Варламов, А.С. Парфенов. // Нива Поволжья. 2011. № 4. С. 10—16.
- 5. Доспехов, Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований) / Б.А. Доспехов. М.: Агропромиздат, 1985. 351 с.
- 6. Методика государственного сортоиспытания сельскохозяйственных культур. М.: Колос, 1971. 239 с.
- 7. ГОСТ 5060–86. Ячмень пивоваренный. Технические условия. М. : Изд-во стандартов. 1987. 6 с.
- 8. Ивойлов, А.В. Реакция сортов ячменя на внесение минеральных удобрений в зоне неустойчивого увлажнения / А.В. Ивойлов, В.И. Копылов, О.Н. Самойлова. // Агрохимия. 2003. № 9. С. 30–41.