

- 10. Гречихин, В.Н. Совершенствование земельного законодательства и управление земельными ресурсами / В.Н. Гречихин, А.И. Нужный // Землеустройство, кадастр и мониторинг земель. 2012. №4.
- 11. Гречихин, В.Н. Схемы землеустройства и территориального планирования / В.Н. Гречихин, А.И. Нужный // Землеустройство, кадастр и мониторинг земель. -2013. № 6.
- 12. Гречихин, В.Н. Землю в основу планирования и развития сельских территорий / В.Н. Гречихин, А.И. Нужный // Вестник ВГАУ. 2013. -№4.

AND DELINEATE THE AREA OF LAND, LOCATED ON THE TERRITORY S.YASASHNAYA TASHLA TERENGULSKY DISTRICT OF ULYANOVSK REGION.

Karpuskina M.S., Tsapovskya O.N.

Key words: land, land surveying, survey plans, delineate.

In this research work carried out work on the collection, systematization and archiving of theoretical and practical data on land surveying of land features.

УДК 631.81

ОПТИМИЗАЦИЯ СИСТЕМЫ УДОБРЕНИЯ ЗЕРНОВЫХ КУЛЬТУР НА ОСНОВЕ БИОЛОГИЗАЦИИ ТЕХНОЛОГИИ ИХ ВОЗДЕЛЫВАНИЯ

Кирюшкина Д.В., студентка 4 курса агрономического факультета Еремина С.А., студентка 3 курса агрономического факультета Научный руководитель – Тойгильдина И. А., кандидат с.-х. наук, доцент

ФГБОУ ВПО «Ульяновская ГСХА им. П.А. Столыпина»

Ключевые слова: микробиологическая активность почвы, биологизация, солома, минеральные удобрения.

Сельскохозяйственные науки

Внесение соломы и биопрепарата позволяет увеличить урожайность яровой пшеницы (2,74-2,76 m/ra), так же способствует улучшению микробиологической активности почвы (53,2-61,3%).

Земледелие является древнейшей отраслью сельского хозяйства, без которой невозможно обеспечить население продуктами питания, животноводческую отрасль кормами, промышленность сырьем, поэтому главные задачи земледелия заключаются в рациональном использовании земли в процессе выращивания культур [1, 2, 3, 4, 5].

В условиях перехода к рынку изменилось положение в отрасли: нарушен севооборот, уменьшено внесение удобрений, сокращены защитные мероприятия. Чтобы решить проблемы земледелия требуется немало средств и комплекс мер, а именно: формирование системы полезащитных насаждений; правильное использование пашни; биологизация земли — обеспечение баланса органических веществ; возделывание бобовых многолетников для естественной регулировки баланса органических веществ в агроценозах [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

В связи с вышесказанным целью наших исследований являлось изучение эффективности системы удобрения на основе биологизации севооборота в сохранении и воспроизводстве плодородия почв.

Для реализации цели исследования на опытном поле Ульяновской ГСХА им. П.А. Столыпина были заложены полевые опыты (схема опыта представлена в табл. 1). Полевой опыт заложен в четырехкратной повторности. Посевная площадь делянки 120 кв.м. (6х20), учетная — 72 кв.м. (4х18), расположение делянок рендомизированное (все 5 полей севооборота введены одновременно в пространстве и во времени).

В опыте проводилось сравнение биологической активности почвы по вариантам, различающимся по условиям для жизни и деятельности микроорганизмов (табл. 1).

Микробиологическая активность на вариантах с внесением азотных удобрений, соломы и биопрепарата была более высокой. Это связано с тем, что на этих вариантах были созданы благоприятные условия для активной жизни и размножения микроорганизмов.

Анализируя полученные данные можно сделать выводы, что наиболее высокая урожайность наблюдалась при совместном применении биопрепарата и соломы на фоне разных доз минеральных удобрений и составила 2,74-2,76 т/га, так же совместное применении биопрепарата и соломы способствовало улучшению микробиологической активности почвы.

Таблица 1. Микробиологическая активность почвы под посевами яровой пшеницы в зависимости от системы удобрения (%) и урожайность, т/га

Вариант	% разложения	Урожайность т/га
1.Без удобрений – контроль	18,3	2,13
2.Фон - NPK нормативно - балансовым методом напланируемую урожайность N - 100 %;P - 80 %; K - 80 % от выноса с урожаями	21,1	2,51
3.Фон + урожай соломы предшествующей культуры	21,4	2,51
4.Фон + солома + N ₁₀ кг/т соломы	23,3	2,55
5.Фон + солома + N ₂₀ кг/т соломы	27,5	2,60
6.Фон - NPK нормативно - балансовым методом на планируемую урожайность N - 100 %; P - 80 %; K - 80 % от выноса с урожаями + биопрепарат	38,0	2,58
7.Фон + урожай соломы предшествующей культуры + биопрепарат	48,0	2,67
8.Фон + солома + N_{10} кг/т соломы + биопрепарат	53,2	2,74
9.Фон + солома + N_{20} кг/т соломы + биопрепарат	61,3	2,76
HCP ₀₅	1,17	0,17

Разложение льняного полотна при этом составило 53,2 – 61,3 %.

Библиографический список:

- 1. Соломисто-азотная система удобрений на черноземе лесостепи Поволжья / А.Х. Куликова, Г.В. Колсанов, Н.В. Хвостов, И.Н. Землянов // Вестник Ульяновской государственной сельскохозяйственной академии. 2010. -№2 (12).- С. 3-13.
- 2. Куликова, А.Х. Дифференциация севооборотов по влиянию на режим органического вещества почвы / А.Х. Куликова // Вестник Ульяновской государственной сельскохозяйственной академии. 2011. №2 (14). -С. 27-33.
- 3. Тойгильдина, И.А. Эффективность высококремнистых пород и минеральных удобрений при возделывании сахарной свеклы в условиях

Сельскохозяйственные науки

Среднего Поволжья : автореферат дис. ... кандидата сельскохозяйственных наук / Тойгильдина И.А . -Саранск, 2008.- 16 с.

- 4. Тойгильдина, И.А. Агроэнергетическая оценка использования диатомита и его смесей с минеральными удобрениями в агротехнологии сахарной свеклы / И.А. Тойгильдина //«Актуальные вопросы агрономии, агрохимии и агроэкологии». Материалы Международной научно-практической конференции посвященной 70-ти летию со дня рождения профессора Куликовой А.Х. Ульяновск :ГСХА им. П.А. Столыпина, 2012. -С. 218 224.
- 5. Шарафутдинова, К.Ч. Оптимизация системы удобрения ячменя на основе биологизации технологии его возделывания / К.Ч. Шарафутдинова, И.А. Тойгильдина, Е.А. Яшин //«Микроэлементы и регуляторы роста в питании растений: теоретические и практические аспекты». Материалы Международной научно-практической конференции , посвященной 75-летию профессору, чл. корр. МАО, академику РАЕН, Заслуженного работника высшей школы Костина В.И.- Ульяновск :ГСХА им. П.А. Столыпина, 2014.-С.
- 6. Исайчев, В.А. Технология производства, хранения и переработки продукции растениеводства: учебное пособие / В.А. Исайчев, Н.Н. Андреев, А.Ю. Наумов. Ульяновск: УГСХА им. П.А.Столыпина, 2013. 500 с.
- 7. Продуктивность паровых звеньев при различных уровнях их биологизациии в земледелии лесостепи Поволжья // М.И. Подсевалов, А.Л. Тойгильдин, М.Н. Гаранин, И.Ф. Кабиров // Материалы Международной научнопрактической конференции «Аграрная наука и образование на современном этапе развития: опыт, проблемы и пути их решения».- 2009.- С. 97-105.
- 8. Морозов, В.И. Продуктивность и качество зерна озимой пшеницы в зависимости от приемов биологизации в севооборотах лесостепи Поволжья/ В.И. Морозов, М.И. Подсевалов, А.А. Асмус // Материалы Всероссийского «Круглого стола» на тему «Ресурсосберегающие технологии: опыт, проблемы, перспективы»: сборник. -Ульяновск, 2007.- С. 113-116.
- 9. Исайчев, В.А. Влияние регуляторов роста и хелатных микроудобрений на урожайность и показатели качества гороха и озимой пшеницы/ В.А. Исайчев, Н.Н. Андреев, Ф.А. Мударисов // Вестник Ульяновской государственной сельскохозяйственной академии. -2012.- № 1(17).-С. 12-16.
- 10. Морозов, В.И. Полевой опыт как метод познания и практического освоения инновационных технологий / В.И.Морозов , А.Л. Тойгильдин // Вестник Ульяновской государственной сельскохозяйственной академии. -2012. -№1 (17).- С. 40-44
- 11. Тойгильдин, А.Л. Урожайность и биологическая продуктивность многолетних трав в севооборотах лесостепи Поволжья / А.Л.

Тойгильдин, В.И. Морозов // Кормопроизводство — 2014. - № 1. - C. 33-36.

- 12. Морозов, В.И. Биологизация севооборотов и регулирование плодородия чернозема выщелоченного лесостепи Поволжья / В.И. Морозов, А.Л. Тойгильдин// «Современные системы земледелия: опыт, проблемы, перспективы». Материалы международной научно-практической конференции посвященной 80-летию со дня рождения доктора сельскохозяйственных наук, профессора, академика Международной академии аграрного образования, почетного работника высшего профессионального образования РФ, Владимира Ивановича Морозова.- Ульяновск: Ульяновская государственная сельскохозяйственная академия, 2011. -С. 176-187.
- 13. Морозов, В.И. Бобовые фитоценозы и оптимизация плодородия почвы/В.И. Морозов, А.Л. Тойгильдин//Земледелие. -2008. -№ 1. -С. 16-17.
- 14. Адаптивно-ландшафтная система земледелия: учебное пособие /А.Г. Галиакберов, К.И. Карпович, А.Х.Куликова, В.И. Морозов, С.Н.Немцев, А.И.Зараров, С.Н. Никитин, М.М. Сабитов, Р.В.Науметов, Е.В. Кузина, В.Г.Захаров, В.Г.Власов, С.Н.Федорочев, И.Ф.Тимергалиев, Р.А. Хакимов, С.А.Никифорава, Г.В.Сайдяшева, Р.Б.Шаршюва, С.В.Капренко, Г.В. Колсанов, А.В.Чепухин, А.И.Золотов, Е.А.Черкасов, Б.К. Саматов, Р.И. Махмутов, Т.В.Нарышкина, Н.С.Дубова, С.В.Стрельцов, В.А.Кольцов.- Ульяновский научно-исследовательский институт сельского хозяйства Россельхозакадемии, 2013. С. 355.
- 15. Хайртдинова, Н.А. Зернобобовые культуры агрофитоценозы в биологизации севооборотов и регулирование плодородия чернозема выщелоченного лесостепи Поволжья: автореферат дис. ... канд. сельскохозяйственных наук / Н.А. Хайртдинова. Кинель, 2010. 20 с.
- 16. Тойгильдин, А.Л. Биоклиматический потенциал и уровень его использования посевами яровой пшеницы в севооборотах лесостепи Поволжья / А.Л. Тойгильдин, М.И. Подсевалов, И.К. Милодорин // Материалы V Международной научно-практической конференции «Аграрная наука и образование на современном этапе развития: опыт, проблемы и пути их решения». Ульяновск: ГСХА им. П.А.Столыпина, 2013. С. 84-90.
- 17. Данилова, Е.В. Эффективность использования диатомита и его смесей с минеральными удобрениями при возделывании озимой и яровой пшеницы :автореферат дис. ... кандидата сельскохозяйственных наук / Е.В. Данилова .- Саранск, 2007.- С. 16
- 18. Данилова, Е.В. Урожайность и качество продукции яровой пшеницы в зависимости от доз внесения в почву диатомита и его смесей с минеральными удобрениями / Е.В. Данилова, Е.А. Яшин Е. // «Агрохи-

Сельскохозяйственные науки

мия и экология: история и современность «.Материалы Международной научно-практической конференции.- 2008. -C. 81-85.

OPTIMIZATION OF THE SYSTEM OF FERTILIZERS GRAINS ON THE BASIS OF BIOLOGIZATION TECHNOLOGIES OF THEIR CULTIVATION

Kiryushkina D.V., Toigildina I.A.

Key words: soil microbiological activity, biological function, the formation of yield, straw, mineral fertilizers

Making straw and biological preparation allows to increase the yield of spring wheat (2,74-2,76 t/ha), also contributes to the improvement of microbiological activity in soil (53,2-61,3%).

УДК 630

БОТАНИЧЕСКИЙ СОСТАВ ЗАЩИТНЫХ ЛЕСОПОЛОС ОПЫТНОГО ПОЛЯ УГСХА

Кирягина Е.К., студентка 3 курса агрономического факультета Научный руководитель - Решетникова С.Н., кандидат с.-х. наук ФГБОУ ВПО «Ульяновская ГСХА им. П.А. Стольтина»

Ключевые слова: лесополосы, ботанический состав, микроклимат, клён американский

Правильно устроенные полезащитные лесополосы положительно влияют на микроклимат поля и уменьшаю ветровую и водную эрозию почвы. Исследование лесополос опытного поля УГСХА говорит о необходимости их улучшения и борьбы с опасным древесным сорняком клёном татарским.

Сельскохозяйственная деятельность в корне изменила естественные природные ландшафты. По существу, человек создал искусственные (антропогенные) системы – агроценозы, поддерживаемые рядом