УДК 631.86

ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ БИОПРЕПАРАТОВ И МИНЕРАЛЬНЫХ УДОБРЕНИЙ НА СЕЛЬСКОХОЗЯЙ-СТВЕННЫХ КУЛЬТУРАХ

А.Х. Куликова, доктор сельскохозяйственных наук, профессор ФГБОУ ВПО «Ульяновская ГСХА им. П.А. Столыпина» С.Н. Никитин, кандидат сельскохозяйственных наук, зам. директора по науке

ГНУ Ульяновский НИИСХ Россельхозакадемии 8(84254)34-1-33 s nikitin@mail.ru

Ключевые слова: биологические препараты, урожайность культур, качество зерна

В результате исследований было установлено, что предпосевная обработка семян биопрепаратами является эффективным агроприёмом, позволяющим повысить урожайность и качество сельскохозяйственных культур.

Биологическая фиксация азота - одна из кардинальных проблем современного земледелия и растениеводства, так как резкое сокращение применения минеральных и органических удобрений приводит к снижению продуктивности и ухудшению качества растениеводческой продукции, падению плодородия почвы. В связи с поиском путей увеличения производства растениеводческой продукции при одновременном снижении доз минеральных удобрений и улучшении экологической обстановки, возрос интерес к препаратам, созданным на основе высокоэффективных штаммов ассоциативных микроорганизмов, применяемых для инокуляции семян злаковых культур. Положительное влияние инокуляции на растение обусловлено не только улучшением азотного питания растений, при внедрении в их ризосферу диазотрофов, но и воздействием микроорганизмов через физиологически активные вещества и микробиологический эффект.

В связи с вышеизложенным имеется настоятельная необходимость изучения эффективности применения микробиологи-

ческих препаратов при возделывании сельскохозяйственных культур в условиях Среднего Поволжья и установления наиболее эффективных микробиологических препаратов.

В период 2004-2006 гг. проведены исследования по изучению эффективности предпосевной обработки семян различными биопрепаратами на урожайность и качество сельскохозяйственных культур.

Почва опытного участка представлена черноземом выщелоченным тяжелосуглинистым на желто-бурой карбонатной глине. Содержание гумуса составляет 5,65 %, общего азота -0,26 %, валового фосфора -0,078 %, pH -6,6, P_2O_5 и K_2O (по Чирикову) 21,5 и 10,3 мг/100 г почвы.

В результате исследований было установлено, что предпосевная обработка семян биопрепаратами является эффективным агроприёмом, позволяющим повысить урожайность и качество сельскохозяйственных культур. При применении биопрепаратов урожайность зерна яровой пшеницы повышается на 3,6-17,8% (табл. 1). При этом более высокие прибавки обеспечило применение биопрепаратов ризоагрин и флавобактерин. Анализируя данные качества зерна яровой пшеницы видно, что предпосевная обработка семян биопрепаратами способствует улучшению этих показателей. Так, масса 1000 зерен при применении биопрепаратов увеличивается относительно контроля на 0,7-4,1 г. Содержание клейковины повышается на 0,4-1,4%, белка – на 1-1,6 %. Повышению содержания клейковины способствует предпосевная обработка семян ризоагрином и флавобактерином.

На фоне минеральных удобрений предпосевная обработка семян биопрепаратами обеспечивает прибавку урожайности 8,8-16%. Содержание белка в зерне увеличивается при применении биопрепаратов ризоагрин и агрофил. В благоприятные годы, не зависимо от внесения азотного удобрения, инокулянты увеличивали зерновую продуктивность яровой пшеницы. В засушливом году препараты хотя и повышали урожайность зерна, но прибавки от них были меньше.

Таблица 1. Влияние биопрепаратов и минеральных удобрений на урожайность и качество зерна яровой пшеницы

	Масса 1000 зерен, г	Содержа-		Урожайность	
Вариант		ние	Белок,		
		клейкови-	%	т/га	%
		ны,%			
Контроль	33,9	23,8	12,3	2,75	-
Ризоагрин	36,3	25,2	13,5	3,24	17,8
Флавобактерин	34,6	24,8	12,2	3,11	13,1
Азорозин	35,3	23,8	13,6	2,85	3,6
Агрофил	35,9	23,0	13,3	2,96	7,6
Мизорин	35,2	21,4	12,8	2,98	8,4
Экстрасол	36,0	23,4	13,7	3,08	12,0
$N_{30}P_{30}K_{30}$ (фон)	36,1	24,7	13,9	3,07	-
Фон + Ризоагрин	38,0	26,2	15,2	3,43	11,7
Фон + Флавобакте-	20.0	25,5	14,2	3,45	12.4
рин	39,0				12,4
Фон + Азорозин	37,7	25,5	14,7	3,51	14,3
Фон + Агрофил	36,9	25,5	15,2	3,56	16,0
Фон + Мизорин	39,4	25,2	14,7	3,34	8,8
Фон + Экстрасол	37,4	24,9	13,7	3,46	12,7

Анализ урожайных данных и качества зерна ячменя (табл. 2) показывает, что при применении биопрепаратов масса 1000 зерен повышается относительно контроля на 2,2-4,8 г.

Содержание белка при применении биопрепаратов приближается к стандартам ГОСТа, предъявляемым к пивоваренным ячменям. При этом урожайность повышается на 5,6-17%. При применении биопрепаратов на фоне минеральных удобрений масса 1000 зерен и содержание белка в зерне остается примерно на уровне контроля. При этом повышается урожайность ячменя на 10,1-16,9%.

Урожайность овса имела значительные колебания по вариантам исследований (табл. 3). Более эффективной была обработка семян биопрепаратом ризоагрин, такая же тенденция сохраняется и на фоне минеральных удобрений. На этом варианте

урожайность превысила контроль на 18,5% (фон б/у), на фоне минеральных удобрений — 26,9%. На остальных вариантах эффективность препаратов была несколько ниже. Однако, по таким показателям как масса 1000 зерен и содержание белка в зерне практически все варианты превосходили контрольные значения.

Таблица 2 Влияние биопрепаратов на урожайность и качество зерна ячменя

	Macca	Белок,	Урожайность	
Вариант	1000 зе-	%	т/га	%
	рен, г	70		70
Контроль	44,3	12,3	3,41	-
Ризоагрин	48,7	13,4	3,74	9,7
Флавобактерин	48,4	11,9	3,99	17,0
Азорозин	48,8	11,5	3,63	6,5
Агрофил	46,5	12,5	3,64	6,7
Мизорин	48,2	12,8	3,60	5,6
Экстрасол	47,3	12,3	3,81	11,7
$N_{30}P_{30}K_{30}$ (фон)	53,5	11,7	3,85	-
Фон + Ризоагрин	52,7	11,7	4,24	10,1
Фон + Флавобактерин	52,8	9,8	4,27	10,9
Фон + Азорозин	53,0	12,3	4,27	10,9
Фон + Агрофил	52,9	10,8	4,50	16,9
Фон + Мизорин	52,7	11,7	4,82	11,2
Фон + Экстрасол	50,9	10,3	3,75	-2,6

Таким образом, в современных условиях при интенсификации земледелия и переводе его на ландшафтную основу большое значение имеет установление агрономически и экономически целесообразного уровня применения удобрений, обеспечивающих повышение урожайности сельскохозяйственных культур. Предпосевная обработка семян биопрепаратами является эффективным агроприёмом, позволяющим повысить продуктивность и качество зерна сельскохозяйственных культур и сократить нормы расхода минеральных удобрений.

Таблица 3. Влияние биопрепаратов на урожайность овса

Вариант	Macca 1000	Б 0/	Урожайность		
	зерен, г	Белок, %	ц/га	%	
Контроль	34,8	11,0	40,0	-	
Ризоагрин	35,5	11,7	47,4	18,5	
Флавобактерин	34,8	12,4	39,7	-0,8	
Азорозин	35,3	11,7	42,8	7,0	
Агрофил	36,4	12,7	44,1	10,3	
Мизорин	35,1	11,5	39,3	-1,8	
Экстрасол	36,4	13,0	41,5	3,8	
$N_{30}P_{30}K_{30}$ (фон)	32,8	13,2	35,3	-	
Фон + Ризоагрин	34,2	12,8	44,8	26,9	
Фон + Флавобак- терин	33,4	14,7	36,0	2,0	
Фон + Азорозин	32,8	14,7	38,3	8,5	
Фон + Агрофил	34,5	13,2	35,0	-0,8	
Фон + Мизорин	34,4	11,7	36,2	2,5	
Фон + Экстрасол	32,3	11,7	33,7	-4,5	

EFFICIENCY OF APPLICATION OF BIOLOGICAL PRODUCTS AND FERTILIZERS ON CROPS A.Kh. Kulikova, S.N. Nikitin

Keywords: biological preparations, productivity of cultures, quality of grain

As a result of researches it has been established, that the presowing cultivation of seeds biological products is the effective agricultural method, allowing to raise productivity and quality of crops.