УДК 636.5.082

ПРОДУКТИВНЫЕ КАЧЕСТВА И СОХРАННОСТЬ КУР ПРИ СОДЕРЖАНИИ ИХ В КЛЕТОЧНЫХ БАТАРЕЯХ РАЗНОЙ КОНСТРУКЦИИ

Д.Д.Садыков, студент 5 курса биотехнологического факультета А.С.Мироненко, студентка 4 курса биотехнологического факультета Научный руководитель – В.В. Наумова, кандидат сельскохозяйственных наук, доцент ФГБОУ ВПО «Ульяновская государственная сельскохозяйственная академия имени П.А.Столыпина»

Ключевые слова: клеточные батареи, яйценоскость, сохранность кур

В статье дана характеристика разных клеточных батарей для содержания кур-несушек и приведены данные, свидетельствующие, что использование современного клеточного оборудования способствует более высокой продуктивности и сохранности кур.

Введение. Основой современного промышленного птицеводства является эффективная система содержания, позволяющая получить максимальную продуктивность и высокую жизнеспособность птицы при минимальных затратах труда и средств, в условиях регулируемого микроклимата и автоматизации трудоемких процессов. Дальнейшая интенсификация промышленного птицеводства тесно связана с клеточной системой содержания, которая является ведущим элементом птицеводческой индустрии. Современное клеточное содержание предусматривает высокую плотность посадки птицы в расчете на 1 м² площади птичника; высокую производительность труда на основе комплексной механизации всех технологических процессов; оптимальные условия содержания птицы, способствующие ее высокой продуктивности и сохранности.

Однако во многих птицеводческих предприятиях используется устаревшее клеточное оборудование, которое не позволяет полностью использовать генетический потенциал птицы, вследствие чего показатели продуктивности низкие [1]. Поэтому очень важно подобрать самое эффективное клеточное оборудование для содержания промышленного стада кур-несушек.

Целью исследования явилось сравнительное изучение продуктивности и сохранности кур-несушек кросса «Родонит – 3» при содер-

жании их в клеточных батареях БКН-3 и ТБК-Е.

Материал и методика исследований. Для решения поставленной цели были проведены исследования в условиях ООО «Симбирская птицефабрика» Ульяновского района. Исследования проводились в двух типовых птичниках, в одном из которых установлено оборудование БКН-3, в другом — ТБК-Е. Возраст птицы на начало яйцекладки был одинаковым, средняя живая масса кур в 120-дневном возрасте составила в 1120 ± 100 г. Рацион кормления птицы соответствовал нормам кормления, и был одинаковым в обоих птичниках. В период исследования была проведена сравнительная оценка клеточных батарей БКН-3 и ТБК-Е. Были изучены показатели: яйценоскость, сохранность поголовья, выход товарных яиц, валовое производство яиц.

Результаты исследований. В таблице 1 показана сохранность курнесушек при содержании в клеточных батареях БКН-3 и ТБК-Е.

Таблица 1 Сохранность поголовья кур-несушек

Поморожения	Клеточные батареи	
Показатели	БКН-3	ТБК-Е
Поголовье на начало учитываемого периода	25000	45000
Сохранность, % - с 22 до 70 недель жизни	88,6	89,7
Выбраковка: - голов - %	7250 29,0	9900 22,0
Падеж: - голов - %	2850 11,4	4635 10,3

При изучении сохранности кур установлено, что отход поголовья был выше при содержании в клетках БКН-3 и составил 11,4 %, что на 1,1 % больше, чем в клетках ТБК-Е. Также в клетках ТБК-Е выбраковка кур составила 22 %, что на 7 % меньше, чем в клетках БКН-3.

Более высокую сохранность кур в клетках ТБК-Е можно объяснить лучшими условиями содержания в этих клетках. Площадь клетки на одну несушку составляет в клеточных батареях БКН-3 - 428,5 см 2 , фронт кормления — 7,12 см, а в клетках ТБК-Е - 459,38 см 2 и 7,35 см, то есть в клетках ТБК-Е птица чувствует себя более свободно и комфортно.

В таблице 2 показан выход товарных яиц.

Таблица 2 Выход товарных яиц

Показатели	Клеточные батареи		
	БКН-3	ТБК-Е	
Снесено яиц всего, тыс.шт.	5910,2	13356,9	
- из них бой, тыс.шт.	189,1	304,9	
- %	3,2	2,3	
- насечка, тыс.шт.	295,5	240,4	
- %	5,0	2,17	
- загрязненных, тыс.шт.	502,4	876,3	
- %	8,5	6,5	
- товарных, тыс.шт.	4923,2	11935,2	
- %	83,3	89,3	

Из таблицы видно, что от кур-несушек, содержащихся в клеточных батареях ТБК-Е, за счет уменьшения количества боя, насечки и загрязненных яиц, получили более высокий выход товарных яиц - 89,3 %, против 83,3 % в клетках БКН-3. Процент боя яиц в клеточных батареях БКН-3 составил 3,2 %, что на 0,9 % больше, чем в клетках ТБК-Е, где он составил 2,2 %. Процент яиц с насечкой и процент загрязненных яиц так же был выше в клетках БКН-3 и составил соответственно 5,0 % и 8,5 %.

Анализ производственных показателей при содержании кур в

Таблица 3 Производственные показатели при содержании кур в различных клеточных батареях

Показатели	БКН-3	ТБК-Е
Яйценоскость на среднюю несушку, шт.	280	291
Средняя масса яиц, г	61,0	61,2
Яйцемасса в расчете на 1 несушку, кг	17,1	17,7
Затраты кормов на 1 гол. за период, кг	45,6	45,6
Затраты кормов на 1 кг яйцемассы, кг	2,6	2,5
Расход воды на 1 гол. в сутки, мл	400	250
Расход воды на 1 гол за период, л	146	91,1
Общий расход воды, м ³	3,1	1,8

зоотехния и биотехнология

различных клеточных батареях (табл. 3) показал, что яйценоскость на среднюю несушку в клетках ТБК-Е составила 291 яйцо, что на 11 яиц больше, чем в клетках БКН-3. Расход воды в клетках БКН-3 почти вдвое больше, чем в клетках ТБК-Е и составил 146 л/ гол. Это объясняется тем, что в клетках ТБК-Е система поения ниппельная, которая позволяет очень экономично расходовать воду, а в клетках БКН-3 система поения оборудована желобковыми проточными поилками, что значительно увеличивает расход воды на голову.

Выводы. Таким образом, по результатам исследований можно сделать вывод, что клеточное оборудование ТБК-Е больше соответствует современным требованиям содержания птицы, оно позволяет получить более высокую продуктивность, наиболее экономно использовать воду и площадь птичника.

Библиографический список

1. Котов И. Ресурсосберегающее оборудование для выращивания птицы // Птицеводство. -2006. - № 5. - С. 43-45.

PRODUCTIVE QUALITY AND PRESERVATION HENS IN THEIR CONTENT IN CELL BATTERIES DIFFERENT DESIGNS

Sadykov D.D., Naumova V.V.

Key words: cell battery, egg production, the preservation of hens

The paper presents the characteristics of different cell batteries for laying hens and provides evidence that the use of modern cell-precision equipment contributes to higher productivity and preservation hens.