ВЛИЯНИЕ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН МИКРОЭЛЕМЕНТАМИ НА ПОКАЗАТЕЛИ ИХ ПРОРАСТАНИЯ

Настина Ю.Р. ФГОУ ВПО «Ульяновская ГСХА»

Ключевые слова: микроэлементы, сульфат марганца, сульфат марганца, яровая пшеница, лабораторная всхожесть, энергия прорастания.

В статье рассматривается влияние микроэлементов — на ростовые процессы яровой пшеницы. Данные показали, что обработка раствором сульфата цинка совместно с сульфатом марганца оказывает интенсивное стимулирующее воздействие на семена.

За последние годы возрос интерес растениеводов к проблеме физиологического значения и широкого использования микроэлементов. Все больше внимания уделяется веществам, которые в малом количестве улучшают метаболизм растений, принимают участие в биохимических и физиологических процессах, протекающих в растительном организме.

К числу перспективных технологических мероприятий, обеспечивающих дальнейшее повышение урожайности и качества продукции растениеводства, следует отнести метод предпосевной обработки семян микроэлементами[1].

В данной работе приводятся данные влияния растворов солей цинка и марганца в форме хлоридов и сульфатов на ростовые процессы яровой пшеницы.

Цинк оказывает влияние на окислительновосстановительные процессы, скорость которых при его недостатке заметно снижается. Дефицит цинка ведет к нарушению в превращении углеводов. Многими исследователями доказана связь между обеспеченностью растений цинком и образова-

нием и содержанием в них ауксинов. При недостатке цинка в растениях подсолнечника и томатов снизилось содержание ауксинов, а добавление его привело к увеличению концентрации ауксинов и возобновлению роста растений. [2].

Марганец существен для процессов роста клеток, с одной стороны, как кофактор РНК-полимеразы II, ответственной за синтез мРНК в ядре, а с другой – необходим в качестве кофактора ауксиноксидазы – ферментативного комплекса, разрушающего индалилуксусную кислоту. При исключении марганца из питательной среды в тканях растений возрастает уровень основных элементов минерального питания, нарушается их соотношение [3]. Под влиянием предпосевной обработки семян растворами сернокислого марганца значительно увеличивается энергия прорастания семян [4].

Целью наших исследований является изучение влияния предпосевной обработки семян микроэлементами на энергию прорастания, лабораторную всхожесть и качество проростков растений яровой пшеницы. Объектом исследования является яровая пшеница нового сорта Симбирцит. Сорт сочетает высокую продуктивность с полевой устойчивостью к бурой ржавчине, пыльной и твёрдой головне. Среднеспелый. Сорт обладает хорошими хлебопекарными качествами.

Семена обрабатываются изучаемыми препаратами из расчета 1-1,5 литра раствора на 1 центнер семян, проращивали на фильтровальной бумаге в чашках Петри при температуре 20°С в термостате, морфофизиологическую оценку проростков проводили на 3-й день.

Данные таблицы. 1 показывают, что исследуемые микроэлементы оказывают положительное влияние на энергию прорастания и лабораторную всхожесть семян, однако обработка растворами хлоридов, напротив, несколько снижает эти показатели, возможно, что ионы хлора подавляют процессы роста. Обработка раствором сульфат цинка совместно с сульфатом марганца, позволяет повысить энергию прорастания по сравнению с контролем на 5,34 %. Наилучший результат лабораторной всхожести наблюдается на варианте с применением раствора сульфат марганца и составляет 97 %, а на других вариантах 93,3-96,3 %.

Таблица 1. Энергия прорастания и лабораторная всхожесть, %.

вариант	энергия прорастания,	лаб-я всхожесть, %	
Sapriani	%		
контроль	86,33±1,2	94,33±1,2	
ZnCl ₂	84,33 ±1,2	94,00±0,8	
MnCl ₂	85,00±1,4	93,33±0,9	
ZnSO ₄	90,33±1,2	96,00±0,8	
MnSO ₄	90,67±0,9	97,00±0,8	
ZnCl ₂ +MnCl ₂	89,00±0,8	94,33±0,9	
ZnSO ₄ +MnSO ₄	91,67±1,2	96,33±1,2	

Также таблица. 2 показывает, что предпосевная обработка семян растворами сернокислого цинка и марганца оказали наибольшее стимулирующее действие на длину зародышевых корешков и проростков.

Таблица 2. Морфофизиологическая оценка проростков (на 3 день).

	длина кореш-	длина	масса ко-	Масса про-
вариант	ков,см	пророст-	решков 10	рост-ков 10
		ков,см	растений,г	растений,г
контроль	4,28	0,89	0,18	0,08
ZnCl ₂	4,29	0,77	0,16	0,07
MnCl ₂	4,10	0,84	0,16	0,07
ZnSO ₄	4,59	1,16	0,20	0,09
MnSO ₄	4,74	1,26	0,18	0,11
ZnCl ₂ +MnCl ₂	4,47	0,90	0,19	0,08
ZnSO ₄ +MnSO ₄	5,11	1,19	0,23	0,12

При сочетанном действии солей сульфатов, длина корешков увеличивается до 5,11см, наибольшая длина пророст-

ков у варианта сульфат марганца 1,26—см, что выше контроля на 19,3 % и 41,5 % соответственно. Увеличение сырой массы корешков наблюдается на варианте сульфат цинка совместно с сульфатом марганца, по сравнению с контролем, где составляет 0,23 г, а сырой массы проростков составляет - 0,12 г.

Результаты полученных опытов подтверждаются полевыми исследованиями (табл. 3).

Табл. 3. Полевая всхожесть в % (среднее за 2009-2010 гг.)

140/11 31 110/12 24/1 26/0 MCC13 3 /3 (epcAncc 34 2003 2010 111)						
	Вариант	2009 г., %	2010 г, %	сред. ,%		
неудобренный фон	Контроль	61,8	58,2	60,0		
	MnCl ₂	59,4	56,0	57,7		
	ZnCl ₂	58,4	56,8	57,6		
	ZnSO ₄	65,3	60,0	62,6		
	MnSO ₄	66,9	60,5	63,7		
	ZnCl ₂ +MnCl ₂	63,5	59,6	61,6		
	ZnSO ₄ +MnSO ₄	65,2	61,4	63,3		
удобренный фон	Контроль	65,1	62,6	63,9		
	MnCl ₂	64,7	60,0	62,4		
	ZnCl ₂	62,5	61,9	62,2		
	ZnSO ₄	72,1	66,4	69,3		
	MnSO ₄	71,7	67,3	69,5		
	ZnCl ₂ +MnCl ₂	69,1	65,4	67,3		
	ZnSO ₄ +MnSO ₄	74,6	67,9	71,3		

В 2009 году наилучший показатель на фоне естественного плодородия получен на варианте сульфат марганца, что выше контроля 5,1 %. На удобренном фоне лучше показал себя вариант с совместным применением сульфат марганца и сульфат цинка по сравнению с контролем полевая всхожесть увеличилась на 9,5 %. В 2010 году на фоне естественного плодородия полевая всхожесть на варианте при совместном приме-

нении сульфат марганца и сульфат цинка превысила контроль на 3,2 %, а на удобренном фоне наилучшие результаты получены на варианте сульфат марганца + сульфат цинка, где полевая всхожесть превышает контроль на 5,3 %.

Таким образом, в наших исследованиях применение микроэлементов положительно влияют на показатели прорастания семян, повышается полевая всхожесть яровой пшеницы.

Библиографический список:

- 1.Костин, В.И. Использование пектина и микроэлементов как фиторегуляторов роста и развития растений / В.И.Костин, Е.Н. Офицеров, В.А. Исайчев //Вестник УГСХА, серия агрономия.- Ульяновск: Ульяновская ГСХА. 2000.- С.5-9.
- 2.Skoog. F.1940.Relationships between zinc and auxinin the growth of higher plans. Amer.J. Bot., 27, 10:939.
- 3.Полевой В.В. Физиология растений: Учеб. Для биол. Спец. Вузов. – М.: Высш. Шк., 1989. – 464 с.
- 4.Власюк П.А., Климовицкая З.М. Физиологическое значение марганца для роста и развития растений. М., « Колос », 1968. 162 с.