Таблица 2 - Влияние длительного применения удобрений в севообороте на накопление тяжелых металлов в зерне озимой ржи (мг на кг)

Варианты	медь	цинк	свинец	кадмий	
Контроль - без удобрений	2,0	7,0	0,23	0,009	
N ₆₀ P ₅₅ K ₄₀	2,3	10,0	0,29	0,012	
N ₁₂₀ P ₅₅ K ₄₀	2,5	12,0	0,33	0,015	
N ₁₈₀ P ₅₅ K ₄₀	2,8	13,0	0,35	0,018	
ПДК	10,0	50	0,5	0,10	

опыта с удобрениями. Аналогичная картина наблюдается по содержанию свинца в зерне. Содержание и кадмия и свинца в зерне хотя и повышаются под действием удобрений, но остается ниже ПДК.

Подытоживая вышеизложенное можно заключить, что длительное интенсивное применение минеральных удобрений, особенно азотных и калийных, способствует подкислению почвы, что вызывает увеличение подвижности тяжелых металлов в почве. По этой причине повышается концентрация ТМ в зерне, хотя она остается значительно ниже ПДК!

Таким образом, длительное интенсивное применение минеральных удобрений хотя и несколько ухудшает экологию почвы и растений в агроценозе, но содержание ТМ в зерне не превышает предельно допустимые концентрации.

УДК 633:631.8:631.51

РОЛЬ БИОЛОГИЧЕСКИХ ПРЕПАРАТОВ И ДИАТОМИТА В ПОЛУЧЕНИИ ЭКОЛОГИЧЕСКИ БЕЗОПАСНОЙ ПРОДУКЦИИ ЯЧМЕНЯ

К.Ч. Шарафутдинова, 4 курс, агрономический факультет Научный руководитель – д.с.-х.н., профессор А.Х. Куликова ФГОУ ВПО «Ульяновская ГСХА»

В последнее время происходит активное загрязнение агрофитоценозов тяжелыми металлами и радионуклидами. Это проявляется во всех регионах, в том числе лесостепи Поволжья. Избыток тяжелых металлов в растениях приводит к нарушению физиолого-химических процессов, что способствует повышению количества токсичных элементов в продукции растениеводства, создающих угрозу здоровья животных и человека. В связи с этим получение экологически безопасной продук-

ции является важнейшей задачей современного сельскохозяйственного производства.

В настоящее время одним из наиболее перспективных и экологически безопасных приемов повышения урожайности признается использование в технологии возделывания культур бактериальных препаратов, которые состоят из различных функциональных групп «полезных» микроорганизмов. Как правило, при внесении в почву они участвуют в различных почвенных процессах, активизируя микробиологическую деятельность и способствуя росту урожайности сельскохозяйственных культур. Перспективным признается также использование для этих целей высококремнистых пород.

В связи с вышеизложенным целью наших исследований явилось изучение влияния предпосевной обработки семян ячменя биопрепаратами Байкал ЭМ-1, Ризоагрин и диатомитовым порошком на урожайность и экологическую безопасность продукции ячменя.

Исследования проведены на опытном поле Ульяновской ГСХА в 2008–2009 гг. Схема опыта включала 12 вариантов: 1. Контроль; 2. Диатомитовый порошок; 3. Байкал ЭМ-1; 4. Байкал ЭМ-1 + диатомитовый порошок; 5. Ризоагрин; 6. Ризоагрин + диатомитовый порошок; 7. N40P40K40; 8. N40P40K40 + диатомитовый порошок; 9. N40P40K40 + Байкал ЭМ-1; 10. N40P40K40 + Байкал ЭМ-1+ диатомитовый порошок; 11.N40P40K40 + Ризоагрин; 12. N40P40K40 + Ризоагрин + диатомитовый порошок.

Обработка семян проводилась в день посева в дозе: опудривание диатомитовым порошком – 20–30 кг/т семян, мелкодисперсное опрыскивание Байкал ЭМ-1 – 12 л/т семян, препаратом Ризоагрин – 200 г торфяного препарата на гектарную норму высева. Для удерживания препаратов на поверхности семян использовались прилипатели – NaKMЦ (для диатомитового порошка) и обрат (для биопрепаратов). В качестве минеральных удобрений использовались аммиачная селитра (34,5 % д.в.), двойной суперфосфат (45 % д.в.) и хлористый калий (60 % д.в.).

Для проведения опыта использовался диатомит Инзенского месторождения Ульяновской области, измельченный до порошкообразного состояния.

Результаты исследований представлены в таблице.

Анализируя урожайный данные в среднем за годы исследований, следует отметить, что применение биопрепаратов положительно сказалось на продуктивности ячменя: она возросла на 0,12-1,0 т/га, или на 4-36%.

Судя по результатам исследований, большей эффективности данных препаратов можно достигнуть на фоне средних доз минеральных удобрений. В этом случае прибавка урожайности по отношению к контролю при опудривании семян диатомитовым порошком и совместно с биопрепаратом Байкал ЭМ-1достигает 0,82–1,0 т/га. Наши данные

Влияние биопрепаратов и диатомитового порошка на урожайность ячменя и экологическую безопасность продукции (2008–2009 гг.)

	Урожай-	Содержание тяжелых металлов, мг/кг						
Вариант		ность, т/га	Zn	Cu	Pb	Cd	Ni	
Контроль		2,81	15,8	8,3	0,21	0,073	0,37	
Диатомит		2,93	15,2	8,1	0,18	0,071	0,37	
Байкал ЭМ-1		3,14	15,2	8,0	0,18	0,064	0,35	
Байкал ЭМ-1 + диатомит		3,22	15,0	7,6	0,18	0,063	0,35	
Ризоагрин		3,05	15,4	7,9	0,16	0,066	0,37	
Ризоагрин + диатомит		3,13	15,2	7,7	0,16	0,069	0,37	
N40P40K40		3,41	13,7	7,3	0,19	0,069	0,34	
N40P40K40 + диатомит		3,63	13,5	7,3	0,16	0,065	0,33	
N40P40K40 + Байкал ЭМ-1		3,70	13,5	6,8	0,16	0,059	0,32	
N40P40K40 + Байк + диатомит	ал ЭМ-1	3,81	13,3	6,4	0,15	0,058	0,32	
N40P40K40 + Ризо	агрин	3,69	13,5	6,8	0,17	0,064	0,34	
N40P40K40 + Ризоагрин + диатомит		3,79	13,4	6,8	0,16	0,064	0,33	
I HCP I	2008 г.	0,08	ПДК в продукции					
	2009 г.	0,13	50	30	0,5	0,1	5,0	

согласуются с данными других исследователей, которые считают, что наиболее высокая прибавка урожайности от биопрепаратов может быть получена на фоне небольших доз минеральных удобрений (Завалин А.А. и др., 2006).

Экологическая оценка продукции ячменя нами проведена по содержанию наиболее токсичных для растений и человека тяжелых металлов: кадмия, свинца и никеля, а также микроэлементов цинка и меди.

Исследования показали, что содержание ТМ в почве опытного поля ни по одному металлу не превышает предельно-допустимые их концентрации (ПДК).

При внесении в почву вместе с семенами диатомита наблюдалась тенденция к снижению накопления в продукции тяжелых металлов. Под действием инокулянтов наблюдалось снижение накопления в зерне цинка на 3–4 %, меди на 4–5 %, синца на 14–24 %, кадмия на 10–12 %. Указанная закономерность проявлялась и при совместном применении минеральных удобрений с биопрепаратами, что связано, по-видимому, с антогонистическим действием поступающих в растения в большем количестве макроэлементов на токсичные и повышением устойчивости растений к действию последних.

Таким образом, использование биопрепаратов и диатомитового

порошка может стать эффективным приемом повышения продуктивности сельскохозяйственных культур и получения экологически более безопасной продукции.

Литература

1. Завалин А.А., Соколов В.А., Тарасов А.Л. Влияние удобрения и биопрепаратов на урожайность сортов ячменя в Верхневолжья. Плодородие, № 2 (29), 2006. С. 26 - 28.

УДК 631.4:631.8:022.3

ИЗМЕНЕНИЕ КАЛИЙНОГО СОСТОЯНИЯ СЕРОЙ ЛЕСНОЙ ПОЧВЫ ПОД ВЛИЯНИЕМ ДЛИТЕЛЬНОГО ПРИМЕНЕНИЯ ВОЗРАСТАЮЩИХ ДОЗ КАЛИЯ В СЕВООБОРОТЕ

И.М. Шарипов, 5 курс, агрономический факультет, Научный руководитель – к.с.-х.н., доцент С.Г. Муртазина ФГОУ ВПО «Казанский государственный аграрный университет»

Продуктивность сельскохозяйственных культур в условиях лесостепи обусловлена обеспеченностью растений элементами питания, среди которых азоту отводится главное место и потому в земледелии Республики Татарстан из года в год большое внимание уделяется к применению азотных и недостаточное к фосфорным и особенно калийным удобрениям. Соотношение внесенных за последние годы азотных, фосфорных, и калийных удобрений составило 1: 0,35: 0,27 (1,2).

Для разностороннего изучения различных аспектов применения калийсодержащих минеральных удобрений в 1991-1992 годы нами заложены полевые опыты в 2-х закладках с возрастающими дозами азотных и калийных удобрений на серых лесных почвах опытного поля Казанского государственного аграрного университета, результаты которых позволяют разработать экологически безопасные параметры их применения в севообороте и в целом провести агроэкологическую оценку применения минеральных удобрений на серых лесных почвах.

Варианты опыта (І блок) предусматривали изучение эффективности различных форм калийных удобрений (КСІ мелкокристаллический, гранулированный, обогащенный микроэлементами В, Си и Zn, а также калийная соль, калимагнезия, сульфат калия). Одновременно исследовали (блоки II-IV) действие возрастающих доз калийного удобрения (40, 80, 120, 160, 200 кг/га д.в.) на трех фонах азотного питания N60; N120; N180. Опыты проводились в зернопропашном севообороте с кар-