УДК 631.411.2:631.8:631.82

ВЛИЯНИЕ СИСТЕМАТИЧЕСКОГО ВНЕСЕНИЯ ЯЧМЕННОЙ СОЛОМЫ НА УРОЖАЙНОСТЬ ГОРОХА И ФИЗИКО-ХИМИЧЕСКИЕ ПОКАЗАТЕЛИ ЧЕРНОЗЕМА ТИПИЧНОГО ЛЕСОСТЕПИ ПОВОЛЖЬЯ

А.Р. Айзятова, 5 курс, агрономический факультет Научный руководитель – к.с.-х.н., доцент Н.В. Хвостов ФГОУ ВПО «Ульяновская ГСХА»

В связи с резким сокращением объёмов внесения традиционного органического удобрения - навоза, а так же снижением поголовья крупного рогатого скота и свиней возникла потребность в поиске дополнительных альтернативных источников органических удобрений.

Одним из таких источников является солома. С развитием механизации, изменением способов уборки (комбайнирование), введением новой технологии безподстилочного содержания животных, необходимостью резкого повышения производительности труда в сельском хозяйстве и стремлением к переходу на индустриальные методы производства перед сельскохозяйственной наукой и практикой встал вопрос о новых путях рационального использования огромного урожая соломы – прежде всего непосредственной запашки её в почву.

В связи с этим целью наших исследований явилось изучение эффективности внесения ячменной соломы, влияние ее на физические свойства чернозема типичного и урожайность гороха.

Исходя из цели исследования складываются следующие задачи:

- определить изменение физических свойств чернозема типичного при внесении ячменной соломы;

Таблица 1. Плотность почвы под посевами гороха в зависимости от систем удобрений, г/см³ (2008–2009 гг.)

	До посева гороха После уборки гороха								
Вариант	слой почвы, см								
	0–10	10–20	20–30	0–30	0–10	10-20	20-30	0-30	
Без удобрений	1,22	1,23	1,28	1,24	1,23	1,31	1,35	1,30	
Солома	1,09	1,15	1,23	1,16	1,17	1,21	1,24	1,20	
Р ₃₆ К ₅₃ + солома	1,16	1,17	1,29	1,20	1,21	1,26	1,30	1,26	

- определить роль ячменной в изменении урожая гороха;

Как показали наши исследования, в зависимости от систем удобрений почва под культурами севооборота приобрела различное по плотности строение пахотного слоя. Разуплотнение пахотного горизонта до посева гороха отмечалось как на фоне отдельного применения ячменной соломы — $1,16~\rm r/cm^3$, так и при совместном внесении с фосфорно-калийными удобрениями $1,20~\rm r/cm^3$ (таблица 1). В варианте с применением фосфорно-калийных удобрений также наблюдалось снижение плотности до $1,22~\rm r/cm^3$.

Для оценки структурного состояния почвы Долговым С.И. и Бахтиным П.У. (1966) предложена следующая шкала: отличным считается такое структурное состояние, при котором содержание агрономически ценных агрегатов составляет >80 % по результатам «сухого» агрегатного анализа и >70 % — при мокром просеивании; хорошим — при 80–60 % и 70–55 % соответственно, удовлетворительным — 60–40 % и 55–40 %, неудовлетворительным 40–20 % и плохим <20 %.

Как показали результаты, содержание агрономически ценных агрегатов в почве в зависимости от систем удобрений и культур в разные годы было неодинаковым.

Таблица 2. Агрегатный состав чернозема типичного под посевами гороха в зависимости от систем удобрений, % (2007–2008 гг.)

		2008 г.		2008 г.					
Вариант	Агрегатный состав, мм								
	>10	0,25–10	<0,25	>10	0,25-10	<0,25			
Контроль	34,1	62,1	3,8	33,3	63,2	3,5			
Солома	18,0	77,5	4,5	18,0	78,0	4,0			
Р ₃₆ К ₅₃ + солома	20,7	76,0	3,3	20,0	76,8	3,2			
HCP ₀₅		2,5			1,7				

В 2007 г. наблюдалось увеличение количества агрономически ценных агрегатов почвы под посевами гороха на 24,7 % в варианте с отдельным внесением соломы относительно контрольного варианта (таблица 2). В варианте с совместным внесении соломы и минеральных удобрений привел к незначительному ухудшению макроструктуры на 1,9% относительно варианта с внесением одной соломы. Закономерное улучшение структуры в вариантах солома и солома РК на 22,5 – 24,7 % (судя по 2007–2008 г.) объясняется тем, что солома как органическое удобрение создает более оптимальные условия для образования агрегатов за счет деятельности микроорганизмов, разлагающих её и выделения клеящих веществ, придающих агрегатам водопрочность.

Однако более значимым показателем структурного состояния

почвы является способность агрономически ценных агрегатов противостоять разрушающему действию воды. Проведенный анализ в данном случае показал чётко выраженную закономерность увеличения водопрочных агрегатов по всем вариантам опыта относительно контроля (рисунок).

Применение органических и минеральных удобрений усиливает развитие подземной массы растений, оптимизирует микробиологический, водно-воздушный режимы почвы, следствием чего является увеличение количества водопрочных агрегатов.

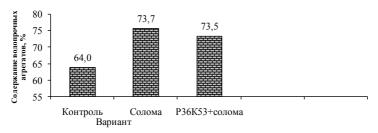


Рисунок. Содержание водопрочных агрегатов в пахотном слое под посевами гороха (2007–2008 гг.)

Одной из основных задач сельского хозяйства является получение стабильно высоких экологически чистых урожаев в определенных климатических условиях без существенного снижения плодородия почв.

Результаты исследований за 2007-2008 гг. позволили выявить влияние ячменной соломы и минеральных удобрений на уро-

Таблица 3. Влияние ячменной соломы и минеральных удобрений на урожайность гороха за 2007–2008 гг., т/га

Donusuru		2007 г.		2008 г.	Средняя за 2 года			
Варианты	т/га	отклонение от контроля	т/га	отклонение от контроля	т/га	отклонение от контроля		
Без удобрений	1,84		0,99		1,42			
P ₃₆ K ₅₃	2,43	0,59	1,69	0,70	2,06	0,65		
P ₃₆ K ₅₃ +солома	2,74	0,89	1,78	0,79	2,26	0,84		
Солома	2,56	0,72	1,66	0,67	2,11	0,70		
HCР ₀₅ , ц/га		0,23		0,09				

жайность гороха (таблица 3). Наиболее высокий урожай зерна в среднем за 2 года гороха получен в варианте с использованием полной нормой минеральных удобрений и ячменной соломы.

2007 г. по погодным условиям отличался более влажным апрелем и июнем, поэтому для гороха год оказался более благоприятным, положительным моментом оказалось то, что в течение всей вегетации гороха была оптимальная температура для роста и развития культуры. Однако, в мае наблюдалась низкая температура относительно среднемноголетней на 2,5 °C. Это снижение температуры несколько снизили темпы формирования роста и развития гороха. Урожайность в варианте без удобрения составило 1,84 т/га. Внесение ячменной соломы на минеральном фоне позволило увеличить урожайность до 2,74 т/га. Прибавка урожайности была значительной и превышала в 3 раза уровень наименьшей существенной разницы относительно контрольного варианта и 0,3 т/га относительно варианта с внесением минерального удобрения. Причина видимо в том, что солома способствовала усилению азотфиксации клубеньковыми микроорганизмами о чем известно из литературы и представлено выше. Таким образом, в условиях 2007 г. очень ярко проявилась роль минерального фона с внесением ячменной соломы. Внесение одной соломы привело к значительным изменениям, урожайность была выше варианта с минеральным фоном.

2008 г. по погодным условиям в течение мая и июня по осадкам оказался в два раза менее обеспеченным, чем среднемноголетние данные. Температурный режим в течение этого времени оказался выше уровня среднемноголетних данных на 2,8 °C. Несколько неблагоприятным оказался июль. Здесь чрезмерное выпадение осадков в 2 и 3 декаде не позволили собрать весь урожай гороха, так как затяжные дожди привели к раскрыванию нижних бобов. В итоге в 2008 году урожайность гороха в варианте без удобрения составила 0,99 т/га. Внесение полного минерального фона позволило повысить урожайность на 0,8 т/га. Прибавка урожая заметна, математически существенная $\text{HCP}_{05} = 0,09$. Внесение ячменной соломы в этих условиях позволило получить прибавку урожая относительно контрольного варианта 0,79 т/га. Внесение одной ячменной позволило собрать урожай гороха на уровне вариантов с внесением минеральных удобрений.

В среднем за 2 года урожайность гороха в варианте без удобрения оказалась равной 1,42 т/га. Заделка в почву ячменной соломы в дозе 3,4 т/га на минеральном фоне позволило получить урожайность 2,26 т/га по сравнению с вариантом с внесением фосфорно-калийных удобрений на 0,19 т/га. Разница между действием соломы на урожайность гороха на фоне полного минерального удобрения и отдельно соломы составила 0,14 т/га. Различия несущественны, однако заметно, что внесение ячменной соломы на минеральном фоне повышает эффективность использования удобрения.

Таким образом, внесение злаковой соломы на фосфорно-калийном фоне под бобовые культуры не приводило к снижению урожайности, а даже повышает ее.

Основным противоречием современного сельскохозяйственного производства является то, что получение высоких и устойчивых урожаев неизбежно сопровождается резким усилением техногенного воздействия на окружающую среду.

При внедрении системы удобрений следует учитывать важный фактор – качество получаемой продукции.

Внесение ячменной соломы под посевы гороха повлияло не только на его урожайность, но и на содержание элементов питания в урожае. Солома, внесенная на фоне минеральных удобрений, повысила содержание калия в продукции относительно варианта с минеральными удобрениями внесением как в хозяйственной, так и нехозяйственной части урожая.

Таблица 4. Влияние ячменной соломы на содержание NPK в зерне и соломе гороха, 2007–2008 гг.

	Содержание NPK, абс. сух. вещество									
Вариант		в зерне			в соломе					
	N	Р	K	N	Р	К				
Без удо- брений	4,16	0,94	1,03	1,29	0,42	0,41				
Р ₃₆ К ₅₃ + солома	4,93	0,95	1,03	1,53	0,48	0,41				
Солома	4,13	4,13 0,94		1,28	0,48	0,42				
HCP ₀₅	0,09	0,07	0,03	0,04	0,02	0,08				

Содержание азота в продукции было значительно ниже варианта с минеральными удобрениями, а в зерне и ниже контрольного. Наряду с относительно высокой урожайность в варианте с соломой наблюдается снижение общего азота в продукции. Вероятно, что здесь проявилась негативная сторона использования соломы в качестве удобрения.

Наибольший вынос азота, фосфора и калия наблюдался в варианте с внесением минеральных удобрений.

В процессе разложения целлюлозоразлогающим микроорганизмам необходим азот для питания и формирования новых организмов. По-видимому, целлюлозоразлогающие микроорганизмы иммобилизировали азот из прикорневой зоны. Соответственно это повлияло и на вынос элементов урожаем гороха (таблица 5).

Таблица 5. Влияние внесения соломы совместно с минеральными удобрениями на вынос NPK основной и побочной продукцией гороха

	_		Общий вынос NPK, кг/га			Вынос на 1 т зерна							
	Е с зерном							с соломой					
Вариант		N	Р	К	N	Р	K	N	Р	К	N	Р	К
	1.	50	11	12	29	9	8	79	20	20	56	14	4
	2.	70	14	89	41	9	9	111	23	98	67	14	14
	3.	50	11	13	29	7	8	79	18	21	56	13	4

В процессе разложения целлюлозоразлогающим микроорганизмам необходим азот для питания и формирования новых организмов. По-видимому, целлюлозоразлогающие микроорганизмы иммобилизировали азот из прикорневой зоны. Соответственно это повлияло и на вынос элементов урожаем гороха.

Наибольший вынос азота, фосфора и калия наблюдался в варианте с внесением минеральных удобрений.

Внесение злаковой соломы под горох не приводило к снижению ее урожайности. Более высокие урожаи гороха возможны при применении минеральных удобрений в комплексе с соломой.

Использование соломы в качестве удобрения приводит к снижению качества продукции в частности содержания азота.

Ячменная солома, используемая в качестве органического удобрения под горох способствует увеличению урожайности.

Внесение ячменной соломы на минеральном фоне способствует повышению урожайности по всем годам исследования. Прибавка к урожаю гороха выше значения ошибки опыта.

УДК 633.63: 631.82

ЭФФЕКТИВНОСТЬ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН ДИАТОМИТОМ ПРИ ВОЗДЕЛЫВАНИИ САХАРНОЙ СВЕКЛЫ

А.П. Артюков, 4 курс, агрономический факультет Научный руководитель – к. с.-х. н., доцент Е.А. Яшин $\Phi \Gamma O Y B \Pi O$ «Ульяновская $\Gamma C X A$ »

В повышении урожаев сельскохозяйственных культур особая роль принадлежит органическим и минеральным удобрениям, которые