УДК 611.013

ЭМБРИОНАЛЬНОЕ РАЗВИТИЕ ЛАНЦЕТНИКА

Стешина Е.С., студентка 2 курса факультета ветеринарной медицины и биотехнологии Научный руководитель – Фасахутдинова А.Н, к.б.н., доцент, ФГБОУ ВО Ульяновский ГАУ

Ключевые слова: онтогенез, эмбриональное развитие, стадии, эмбрион ланцетника.

Эта работа посвящена эмбриональному развитию ланцетнику, его роли в истории происхождения позвоночных животных.

Введение. Последующее эмбриональное развитие ланцетников, примитивных морских животных из семейства Branchiostomatidae, является примером эмбрионального развития хордовых. Изучение онтогенеза ланцетников имеет важное значение для филогенетики, особенно для истории происхождения позвоночных.

Цель работы. Выяснить каким образом проходит эмбриональное развитие ланцетника, а также для лучшего понимания его вклада в историю развития позвоночных животных.

Результаты исследования. Ланцетники – двуполые животные. Количество самцов и самок в популяции одинаковое. Размножение ланцетников происходит весной, летом и осенью. Поскольку половых протоков нет, зрелые половые клетки выходят через разорванные стенки половых желез и стенки тела в околожаберную полость, откуда они попадают в воду.

Дробление. Из-за небольшого количества желтка первый период онтогенеза проходит легко — дробление голобластическое (полное), бластомеры почти одинакового размера (дробление не совсем равномерное), симметрия дробящегося яйца радиальная с элементами двусторонней симметрии. Редко можно наблюдать слабые признаки спирального дробления.

Борозда первого деления обычно проходит через животный и вегетативный полюса и середину серпа мезодермы. Таким образом, яйцеклетка симметрично делится на две половины. Борозда второго

отдела также проходит меридионально и перпендикулярно борозде первого отдела, отделяя два анимальных (задних брюшных) бластомера от двух вегетативных (переднеспинных). Первые содержат материала мезодермального серпа несколько меньше, чем вторые. Третье деление проходит чуть выше экватора и образует четыре анимальных и вегетативных микромера, в то время как два задних немного меньше В четвертом, примерно меридиональном проявляется двусторонность – из восьми вегетативных бластомеров два передних и два задних меньше, чем остальные боковые. Пятое деление происходит в меридиональном широтное, шестое деление направлении. После шестого деления бластомеры располагаются неправильно, а на седьмом они расходятся в разные стороны. Дробление становится несинхронным и неправильным с восьмого деления. Медленнее всего делятся крупные энтодермальные бластомеры, а мелкие мезодермальные делятся быстрее.

В конце формируется целобластула, которая характеризуется большой полостью и однослойной бластодермой. Бластоцель появляется на стадии 4-8 бластомеров. Первоначально она открыта на обоих полюсах яйцеклетки, но затем эти отверстия закрываются. Увеличение бластулы и разрастание бластоцели происходит за счет набухания студенистого вещества в последней. Позже, при максимальной величине бластоцеля, это вещество разжижается почти до плотности морской воды.

Гаструляция. Клетки внутреннего слоя образуются в результате инвагинации клеток его стенки в полость бластулы. Постепенно края бластопора смыкаются, и эмбрион удлиняется за счет выпячивания тела в переднезаднем направлении и уменьшения диаметра гаструлы. Эмбрион становится двусторонне симметричным.

Нейруляция. Следующим этапом эмбрионального развития является дифференциация зародышевых листков и органогенез. Наличие комплекса спинномозговых органов, а именно нервной трубки, хорды и осевой мускулатуры, является одной из особенностей типа хордовых. Стадия, на которой закладываются осевые органы, называется нейрула. Внешне она характеризуется изменениями, происходящими с зачатком нервной системы.

Эти изменения начинаются с увеличения эктодермы по краям нервной пластинки. В результате нервные валики растут навстречу друг другу, а затем сближаются. Пластинка опускается внутрь и сильно изгибается. Затем происходит формирование бороздки и нервной трубки, которая некоторое время остается открытой в передней и задней частях эмбриона. Одновременно с формированием нервной происходят значительные изменения внутреннем зародышевом листке. Из нее постепенно выделяются материалы будущих внутренних органов ланцетника. Зачаток хорды начинает изгибаться, выделяется из общей пластинки и превращается в отдельную массу в виде твердого цилиндра. Одновременно происходит выделение мезодермы. Наличие трех пар сегментов характерной стадией в развитии ланцетника, свидетельствующей о его эволюционном родстве с трехсегментными личинками полухордовых и иглокожих. У ланцетника сильно выражен способ формирования кишечной полости. Этот метод является исходным для всех вторичноротвых животных, но не так явно выражен у большинства высших животных, за исключением круглоротых. После разделения хорды и мезодермы концы энтодермы постепенно сходятся в дорсальной части, затем смыкаются и образуют замкнутую кишечную трубку [1-4].

Вывод. Мы выяснили, как проходит эмбриональное развитие ланцетника. Так же обнаружили, что ланцетник представляет собой упрощённую схему развития всех высших хордовых, поэтому его используют во многих учебниках и пособиях в качестве примера для описания эмбриогенеза хордовых.

Библиографический список:

- 1. Дежаткина, С. В. Возрастная физиология животных / С. В. Дежаткина, Н. А. Любин, В. В. Ахметова. Ульяновск: Ульяновский ГАУ, 2020. 141 с.
- 2. Дежаткина, С.В. Радиобиология / С. В. Дежаткина, В. В. Ахметова. Ульяновск: Ульяновский государственный аграрный университет им. П.А. Столыпина, 2020. 186 с.
- 3.Перфильева, Н.П. Концептуальные положения научной школы профессора Н. А. Жеребцова /Н. П. Перфильева, Л. Д. Журавлева, С. Н.

Хохлова [и др.] //Механизмы и закономерности индивидуального развития человека и животных: материалы Международной научнопрактической конференции. — Саранск, 2015. — С. 144-149.

- 3. Фасахутдинова, А.Н. Обучение обучающихся морфологическим дисциплинам на факультете ветеринарной медицины и биотехнологии /А.Н. Фасахутдинова, С.Н. Хохлова, М.А. Богданова //Инновационные технологии в высшем образовании: Материалы Национальной научно-методической конференции. Ульяновск, 2022. С.172—177.
- 4.Фасахутдинова, А.Н. Практика проведения лабораторных занятий «Цитология, гистология и эмбриология» по специальности «Ветеринария»/А.Н. Фасахутдинова, С.Н. Хохлова, М.А. Богданова//Материалы Национальной научно-методической конференции профессорско-преподавательского состава «Инновационные технологии в высшем образовании». Ульяновск, 2020. —С.48—52.
- 5.Фасахутдинова, А.Н. Цитология, гистология и эмбриология: учебное пособие для лабораторных занятий /А.Н. Фасахутдинова, С.Н. Хохлова, М.А.Богданова, Н.П. Перфильева. Ульяновск: УлГАУ, 2023. 216с.

EMBRYONIC DEVELOPMT OF THE LANCEOLATE

Steshina E.S. Scientific supervisor – Fasakhutdinova A.N. Ulyanovsk SAU

Keywords: ontogenesis, embryonic development, stages, lanceolate embryo

This work is devoted to the embryonic development of the lanceolate, its roles in the history of the origin of vertebrates.