ОСНОВНЫЕ ОСОБЕННОСТИ БИОХИМИЧЕСКОГО СОСТАВА КРОВИ КРУПНОГО РОГАТОГО СКОТА

Замяткина Е.С., Замяткина А.С., студентки 2 курса факультета ветеринарной медицины и биотехнологии Научный руководитель – Решетникова С.Н., кандидат сельскохозяйственных наук, доцент ФГБОУ ВО Ульяновский ГАУ

Ключевые слова: крупный рогатый скот, биохимия, кровь, биохимический состав, организм, животное.

В статье рассмотрены основные особенности биохимического состава крови крупного рогатого скота как одного из важнейших сельскохозяйственных животных.

Введение. Кровь является важнейшей биологической средой, которая отражает метаболические процессы, происходящие в организме животных, в том числе крупного рогатого скота (КРС). Исследование биохимических показателей крови крупного рогатого скота позволяет оценить работу различных органов и систем, включая печень, почки, сердечно-сосудистую систему, а также состояние обмена веществ.

Цель работы. Изучить биохимический состав крови крупного рогатого скота, уделив особое внимание белковому составу крови, факторам, влияющим на биохимический состав крови крупного рогатого скота, и неорганическим составляющим их крови.

Результат исследования. Биохимический анализ крови включает множество параметров, которые отражают состояние белкового, углеводного, липидного и минерального обменов. Рассмотрим основные параметры и их особенности у крупного рогатого скота. [1]

1. Белковый обмен. Белки крови выполняют множество функций, включая транспорт веществ, участие в иммунных реакциях и

поддержание онкотического давления. Основные показатели белкового обмена у КРС:

- Общий белок. Его уровень отражает состояние белкового обмена и здоровье печени, так как именно в этом органе синтезируется большинство белков плазмы.
- Альбумины. Уменьшение их уровня может свидетельствовать о проблемах с печенью, почками или недостатке белка в рационе.
 - Глобулины: Это белки, связанные с иммунной функцией.
- Мочевина. Уровень мочевины отражает интенсивность белкового обмена и работу почек.
- 2. Углеводный обмен. Глюкоза основной источник энергии для организма КРС, однако у этих животных она также активно синтезируется в печени в процессе глюконеогенеза, так как основным источником энергии для них служат летучие жирные кислоты, образующиеся при ферментации кормов в рубце.
- 3. Липидный обмен. Липиды играют важную роль в энергетическом обмене и формировании клеточных структур. У КРС липидный обмен отличается из-за их способности использовать жирные кислоты, полученные из рубца.
- 4. Минеральный обмен. Минеральные вещества необходимы для работы ферментов, формирования костей и поддержания кислотно щелочного баланса.
- Кальций (Ca). Уровень кальция важен для работы мышц, нервной системы и формирования костей. Гипокальциемия часто наблюдается у коров в период лактации (послеродовой парез).
- Фосфор (P). Фосфор участвует в энергетическом обмене и формировании костной ткани.
- Магний (Mg). Недостаток магния может привести к развитию тетании.
- Железо (Fe). Железо необходимо для синтеза гемоглобина, и его дефицит может привести к анемии. [2, 3, 4]
- 5. Ферменты. Ферменты крови отражают функциональное состояние различных органов, прежде всего печени и мышечной ткани.
- Аланинаминотрансфераза (АЛТ) и аспартатаминотрансфераза (АСТ): Эти ферменты используются для оценки работы печени.

- Щелочная фосфатаза (Щ Φ). Уровень Щ Φ повышается при заболеваниях печени, костной патологии или нарушении обмена кальция.
- Гамма-глутамилтрансфераза (ГГТ). Повышение концентрации этого фермента свидетельствует о повреждении печени или желчных протоков.
- 6. Кислотно-щелочное состояние (КЩС). Кислотно-щелочной баланс крови КРС определяется соотношением кислот и оснований. Нормальное значение рН крови составляет 7,35–7,45. Отклонения от этого диапазона могут быть вызваны ацидозом (снижение рН) или алкалозом (повышение рН), которые часто связаны с нарушением питания или метаболическими заболеваниями.

К факторам, влияющим на биохимический состав крови КРС относятся возраст и физиологическое состояние, кормление и патологические состояния. [5, 6]

Вывод. Биохимический состав крови крупного рогатого скота отражает состояние обменных процессов и работу жизненно важных органов. Регулярный мониторинг биохимических показателей позволяет вовремя выявлять патологии, корректировать рацион и повышать продуктивность животных. Современные методы анализа крови дают возможность ветеринарным специалистам детально изучать метаболические процессы и разрабатывать эффективные стратегии профилактики и лечения заболеваний.

Библиографический список:

- 1. Абилева Г. У. Гематологические показатели стельных сухостойных коров при скармливании биотехнологических добавок / Г. У. Абилева // Актуальные проблемы и научное обеспечение развития современного животноводства: сб. статей по мат-лам Всеросс. (национ.) науч.-практ. конф.; под общ. ред. С. Ф. Сухановой. 2019. С. 229–233.
- 2. Абилева Г. У. Морфологические и биохимические показатели крови телят различного происхождения в ЗАО «Глинки» / Г. У. Абилева // Вестник Курганской ГСХА. -2012. -№ 2 (2). С. 55–56.
- 3. Алексеева Е. И. Гематологические показатели коров мясных пород / Е. И. Алексеева // Роль аграрной науки в устойчивом развитии

Материалы IX Международной студенческой научной конференции «В мире научных открытий»

сельских территорий: сб. III Всеросс. (национ.) науч. конф. – 2018. – С. 321–324.

- 4. Васильева С.В., Конопатов Ю.В. Клиническая биохимия крупного рогатого скота: Учебное пособие.-2- е изд., испр.-СПБ.: Издательство «Лань», 2017.-188 с.
- 5. Интерпретация биохимических показателей крови коров на рационах с включением кукурузного зерна / К. В. Киреева, Н. М. Костомахин, И. А. Пушкарёв, Т. В. Куренинова // Главный зоотехник. 2021.- № 3 (212).- C. 3-13. DOI: 10.33920/sel-03-2103-01.
- 6. Костомахин Н. М. Характеристика морфологических и биохимических показателей крови чистопородного молодняка чёрнопёстрой породы и помесей с герефордской / Н. М. Костомахин, С. Л. Сафронов // Вестник Курганской ГСХА. 2020. № 4 (36). С. 15–22.

THE MAIN FEATURES OF THE BIOCHEMICAL COMPOSITION OF CATTLE BLOOD

Zamyatkina E.S., Zamyatkina A.S. Scientific supervisor – Reshetnikova S.N. Ulyanovsk SAU

Keywords: cattle, biochemistry, blood, biochemical composition, organism, animal.

The article discusses the main features of the biochemical composition of the blood of cattle as one of the most important farm animals.