ВЛИЯНИЕ ЦЕОЛИТСОДЕРЖАЩЕЙ ПОРОДЫ НА МИНЕРАЛЬНЫЙ ПРОФИЛЬ КОСТЕЙ

Замальдинова А.А., студентка 2 курса факультета ветеринарной медицины и биотехнологии

Научный руководитель - Шленкина Т.М., кандидат биологических наук, доцент ФГБОУ ВО Ульяновский ГАУ

Ключевые слова: минеральный состав, кальций, фосфор, полисоли, кремнеземистый мергель.

Были проведены исследования, направленные на анализ воздействия различных минеральных добавок на минеральный состав трубчатых костей молодняка свиней. Уровень содержания минеральных элементов в костной ткани свиней зависит от их возраста, физиологического состояния и условий кормления. Улучшение минерального питания свиней способствует увеличению их продуктивности и способности к воспроизводству.

Ввеление.

Минеральный состав различных тканей и всего организма позволяет оценить общий запас минеральных элементов и их распределение между органами и тканями. Каждая ткань имеет свой характерный уровень содержания минеральных веществ, однако этот уровень варьируется в зависимости от различных факторов, включая питание [1-3].

Неорганическая часть организма в значительной степени состоит из двух основных химических элементов — кальция и фосфора, которые составляют 35 % и 50 % соответственно, придавая костям их плотность. Кости выполняют роль резервуара для основных минералов в организме, включая 98 % кальция, 85 % фосфора, 50 % магния и 45 % натрия. Остальные 15 % составляют бикарбонаты, цитраты, фториды, различные соли и микроэлементы [4-8].

Ключевыми микроэлементами являются медь (Cu), цинк (Zn),

Материалы IX Международной студенческой научной конференции «В мире научных открытий»

стронций (Sr), барий (Ba), бериллий (Be), алюминий (Al), молибден (Mo), золото (Au), марганец (Mn), железо (Fe), кремний (Si) и другие. Считается, что недостаток или избыток этих элементов может существенно влиять на процессы обновления кристаллической решетки костных минералов, а также определять их пространственную структуру, что, в свою очередь, оказывает значительное влияние на прочностные характеристики костной ткани [9-12].

Материал и методы исследований.

Для проведения эксперимента были сформированы три группы по 12 голов в каждой. І группа поросят получала основной рацион (О.Р.). Поросята ІІ группы, дополнительно к основному рациону получали полисоли. Животным ІІІ группы, в основной рацион вводили добавки 2 % кремнеземистого мергеля от сухого вещества комбикорма, что соответствовало по микроэлементам: кобальту, железу меди, цинку марганцу даваемым в полисолях животным ІІ группы.

В возрасте 1, 60, 105, 270 суток, проводили убой животных по 3 головы из каждой группы и на анализ брали образцы бедренных, пястных костей.

Результаты исследований.

При рождении поросят мы не обнаружили значительных различий в содержании железа в трубчатых костях животных из опытных групп; его уровень в этот период варьировался от 2,25 до 2,4 мг/кг воздушно-сухой ткани. В 60-дневном возрасте поросят содержание железа в III группе оказалось на 13,93 % (P<0,1) и на 10,0 % (P<0,1) выше, чем в I и II группах соответственно, в то время как во II группе оно практически не отличалось от уровня І группы. В 105дневном возрасте содержание железа в костной ткани свиней II группы было на 25,53 % (Р<0,05) выше по сравнению с І группой, а в ІІІ группе этот показатель превышал уровень І и ІІ групп на 34,04 % (Р<0,02) и 6,78 % (Р>0,05) соответственно. У 9-месячных свиней концентрация железа в трубчатых костях в III группе была на 21,65 % (P<0,01) и 15,69 % (P<0,02) выше, чем в I и II группах. Таким образом, добавление кремнеземистого мергеля в рацион поросят способствовало более эффективному увеличению содержания железа в трубчатых костях животных по сравнению с добавками полисолей.

По уровню меди в тканях трубчатых костей животных I и II групп

на 1, 60 и 270 сутки после рождения значительных различий не было выявлено. Однако на 105 сутки меди в ІІ группе оказалось на 12,87 % больше, чем в I группе (P<0,05). При рождении содержание меди в костной ткани свиней III группы превышало таковое в I группе на 6,56 % (Р<0,1). В 2-месячном возрасте у поросят ІІІ группы этот показатель был выше на 10,0 % (Р>0,05) и 7,32 % (Р>0,05), а на 105 сутки – на 19,8 % (Р<0,01) и 6,14 % (Р>0,05). У 9-месячных свиней содержание меди в III группе превышало уровень в I и II группах на 17,0 % (P<0,02) и 11,25 % (P<0,1) соответственно. Таким образом, использование кремнеземистого мергеля в рационе свиней способствовало более значительному накоплению меди в тканях трубчатых костей по сравнению с добавками полисолей.

Заключение.

Таким образом, содержание минеральных элементов в костной ткани свиней зависит от их возраста, физиологического состояния и условий кормления. Оптимизация минерального питания свиней приводит к повышению их продуктивности и воспроизводительной способности.

Библиографический список:

- 1. Шленкина Т.М. Использование различных источников минеральных веществ в рационах свиней / Т. М. Шленкина // Кремний и жизнь. Кремнистые породы в сельском хозяйстве: Материалы Национальной научно-практической конференции с Международным участием, Ульяновск, 08–09 апреля 2021 года. Ульяновск: Ульяновский государственный аграрный университет им. П.А. Столыпина, 2021. С. 226-231. EDN DJQCOI.
- 2. Шленкина Т.М. Изменения минерального профиля костей под воздействием минеральных добавок / Т. М. Шленкина // Кремний и жизнь. Кремнистые породы в сельском хозяйстве: Материалы Национальной научно-практической конференции с Международным участием, Ульяновск, 08–09 апреля 2021 года. Ульяновск: Ульяновский государственный аграрный университет им. П.А. Столыпина, 2021. С. 220-225. EDN SSNTEY.
- 3. Шленкина, Т. М. Возрастные особенности механикопрочностных свойств костей свиней / Т. М. Шленкина //

Кремний и жизнь. Кремнистые породы в сельском хозяйстве: Материалы Национальной научно-практической конференции с Международным участием, Ульяновск, 08–09 апреля 2021 года. – Ульяновск: Ульяновский государственный аграрный университет им. П.А. Столыпина, 2021. – С. 216-219. – EDN LASJEI.

- 4. Шленкина, Т. М. Влияние кремнеземистого мергеля на минеральный состав костей свиней / Т. М. Шленкина // Кремний и жизнь. Кремнистые породы в сельском хозяйстве: Материалы Национальной научно-практической конференции с Международным участием, Ульяновск, 08–09 апреля 2021 года. Ульяновск: Ульяновский государственный аграрный университет им. П.А. Столыпина, 2021. С. 211-215. EDN SXRDDK.
- 5. Шленкина, Т. М. Цеолитсодержащая порода в рационах свиней / Т. М. Шленкина // Профессиональное обучение: теория и практика: материалы II Международной научно-практической конференции, посвященной актуальным вопросам профессионального и технологического образования в современных условиях, Ульяновск, 31 мая 2019 года. Том 2. Ульяновск: Ульяновский государственный педагогический университет им. И.Н. Ульянова, 2019. С. 505-511. EDN KKMKYE.
- 6. Шленкина Т.М. Цеолит в рационах свиней и его влияние на содержание свинца во внутренних органах свиней /Шленкина Т.М. //В сборнике: Профессиональное обучение: теория и практика. Материалы II Международной научно-практической конференции, посвященной актуальным вопросам профессионального и технологического образования в современных условиях. 2019. С. 498-505.
- 7. Шленкина, Т. М. Цеолит в рационах свиней и его влияние на содержание свинца во внутренних органах свиней / Т. М. Шленкина // Профессиональное обучение: теория и практика: материалы II Международной научно-практической конференции, посвященной актуальным вопросам профессионального и технологического образования в современных условиях, Ульяновск, 31 мая 2019 года. Том 2. Ульяновск: Ульяновский государственный педагогический университет им. И.Н. Ульянова, 2019. С. 498-505. EDN TUGDBS.
- 8. Шленкина, Т. М. Влияние цеолитсодержащей породы на содержание свинца в печени свиней / Т. М. Шленкина //

Профессиональное обучение: теория и практика: материалы II Международной научно-практической конференции, посвященной актуальным вопросам профессионального и технологического образования в современных условиях, Ульяновск, 31 мая 2019 года. Том 2. — Ульяновск: Ульяновский государственный педагогический университет им. И.Н. Ульянова, 2019. — С. 484-490. — EDN IXPNXS.

- 9. Шленкина, Т. Влияние различных минеральных подкормок на механико-прочностные свойства костей свиней / Т. Шленкина // Ветеринария сельскохозяйственных животных. -2009. № 7. C. 59-63. EDN YTKIWD.
- 10. Шленкина, Т. М. Нетрадиционные добавки в рационах свиней и их влияние на плотность ребра / Т. М. Шленкина // Аграрная наука и образование на современном этапе развития: опыт, проблемы и пути их решения: Материалы IX Международной научно-практической конференции, посвященной 75-летию Ульяновского государственного аграрного университета имени П.А. Столыпина, Ульяновск, 20–21 июня 2018 года. Том 2018-Часть 1. Ульяновск: Ульяновский государственный аграрный университет им. П.А. Столыпина, 2018. С. 413-416. EDN XURZID.
- 11. Шленкина, Т. М. Зависимость промеров ребра от обеспеченности организма животных минеральными веществами / Т. М. Шленкина // Аграрная наука и образование на современном этапе развития: опыт, проблемы и пути их решения: Материалы IX Международной научно-практической конференции, посвященной 75-летию Ульяновского государственного аграрного университета имени П.А. Столыпина, Ульяновск, 20–21 июня 2018 года. Том 2018-Часть 1. Ульяновск: Ульяновский государственный аграрный университет им. П.А. Столыпина, 2018. С. 407-412. EDN XURZHN.
- 12. Шленкина, Т. М. Влияние нетрадиционных кормов на индексы макроморфометрии пястной кости свиней / Т. М. Шленкина // Аграрная наука и образование на современном этапе развития: опыт, проблемы и пути их решения: Материалы IX Международной научнопрактической конференции, посвященной 75-летию Ульяновского государственного аграрного университета имени П.А. Столыпина, Ульяновск, 20–21 июня 2018 года. Том 2018-Часть 1. Ульяновск: Ульяновский государственный аграрный университет им. П.А.

Столыпина, 2018. – С. 402-406. – EDN XURXGH.

INFLUENCE OF ZEOLITE-CONTAINING ROCK ON THE MINERAL PROFILE OF BONES

Zamaldinova A.A. Scientific supervisor – Shlenkina T.M. Ulyanovsk SAU

Keywords: mineral composition, calcium, phosphorus, polysalts, siliceous marl.

Studies were conducted to analyze the effect of various mineral supplements on the mineral composition of tubular bones of young pigs. The level of mineral elements in the bone tissue of pigs depends on their age, physiological state and feeding conditions. Improving the mineral nutrition of pigs helps to increase their productivity and reproductive capacity.