УДК 631.82:633.853.494

ФОРМИРОВАНИЕ УРОЖАЯ ЯРОВОГО РАПСА НА ПРЯМОМ ПОСЕВЕ В УСЛОВИЯХ УЛЬЯНОВСКОЙ ОБЛАСТИ

Фрилинг С.С., студентка 1 курса магистратуры факультета агротехнологий, земельных ресурсов и пищевых производств Салихов А. Ж., студент 3 курса магистратуры факультета агротехнологий, земельных ресурсов и пищевых производств Бадыгин А.И., студент 5 курса факультета агротехнологий, земельных ресурсов и пищевых производств Научный руководитель — Тойгильдина И.А., кандидат сельскохозяйственных наук, доцент ФГБОУ ВО Ульяновский ГАУ

Ключевые слова: Panc, урожайность, прямой сев

Работа посвящена изучению приемов повышения продуктивности рапса ярового на технологии прямого посева в условиях Ульяновской области.

Введение. Актуальность разработки эффективных методик выращивания рапса в почвенно-климатических условиях Ульяновской области, включающих сбалансированное сочетание способов обработки почвы и систематическое внесение удобрений, представляет значимый интерес как с научной, так и с практической точки зрения.

Цель работы. В связи с этим цель научной работы являлось обоснование приемов повышения продуктивности рапса ярового на технологии прямого посева в условиях Ульяновской области.

Результаты исследований. Исследования эффективности технологии возделывания ярового рапса проводились в стационарном полевом опыте кафедры земледелия, растениеводства и селекции ФГБОУ ВО Ульяновский ГАУ, который подразумевает изучение следующего севооборота: рапс яровой - озимая пшеница - соя - яровая пшеница - гречиха - ячмень. Объектом исследования явились посевы рапса ярового сорта Абилити с нормой высева 1,5 млн. всхожих семян на 1 га.

Изучаемые факторы: нормы минеральных удобрений и промежуточные почвопокровные культуры.

Фактор А – норма удобрений:

 A_0 – без удобрений (соответствует уровню экстенсивных агротехнологий);

 A_1 – поддерживающие нормы удобрений (соответствует уровню нормальных агротехнологий);

 A_2 — рекомендованные нормы удобрений для региона (соответствует уровню интенсивных агротехнологий).

Фактор В – почвопокровные культуры:

 B_0 - без почвопокровных культур;

- B_1 посев яровых почвопокровных культур после уборки зерновых колосовых культур (состав смеси: дайкон, редька, вика, чечевица, овес, суданская трава, фацелия, лен, норма высева смеси 13,5 кг/га).
- B_2 посев озимых почвопокровных культур после уборки зерновых колосовых культур (состав смеси: озимая рожь, озимая вика, норма высева смеси 25 кг/га).

При обосновании смесей использовался способ подбора почвопокровных культур и расчет норм высева смеси по О.Л. Томашовой.

Изучаемые нами факторы сказались на урожайности зерна рапса (таблица 1). Так, в среднем за два года исследований на варианте без удобрения (по фактору A) она составила 1,07 т/га. На вариантах с нормой удобрения $N_{23}P_{15}K_{23}S_2$ рапс сформировал более высокую урожайность: без почвопокровных культур — 1,37 т/га, с яровыми почвопокровными культурами — 1,41 т/га и с озимыми почвопокровными культурами — 1,39 т/га.

На более высоком уровне удобрений — $N_{47}P_{30}K_{46}S_5$ отмечено значительное увеличение урожайности. Она возросла до 1,64, 1,71 и 1,76 т/га соответственно фактору В.

В среднем за два года по фактору А наиболее высокая урожайность была получена на варианте A_2 ($N_{47}P_{30}K_{46}S_5$) и составила 1,70 т/га, что на 0,63 т/га или на 58,8% выше варианта без удобрений.

Таблица 1. Урожайность ярового рапса при 8 % влажности и 100 % чистоте за 2023-2024 гг., т/га

Варианта опыта		Урожайность, т/га		В среднем по фактору В, 2023-2024	В среднем по фактору A, 2023-2024
Удобрения	ПП	2023 г.	2024 г.	2023-2024 гг.	2023-2024 гг.
А ₀ Без удобрений	B ₀	1,03	0,82	0,92	1,07
	$\frac{\mathrm{B_1}}{\mathrm{B_2}}$	1,12 0,98	1,27 1,18	1,20 1,08	
A ₁ N ₂₃ P ₁₅ K ₂₃ S ₂	B_0	1,45	1,28	1,37	1,39
	$\frac{\mathrm{B_1}}{\mathrm{B_2}}$	1,62 1,44	1,20	1,41 1,39	
A ₂ N ₄₇ P ₃₀ K ₄₆ S ₅	B_0	1,89	1,4	1,64	1,70
	$\frac{\mathrm{B_1}}{\mathrm{B_2}}$	2,08 1,90	1,33 1,61	1,71 1,76	
HCP ₀₅	ДЛЯ	1,90	1,01	1,70	
	частных	0,22	0,20		
	средних А	0.14	0,16		
	В	0,16	0,18		

 B_0 – без почвопокровных культур; B_1 – яровые почвопокровные культуры; B_2 – озимые почвопокровные культуры

За два года исследований в среднем по фактору В по всем вариантам удобрений выделялся вариант с яровыми почвопокровными культурами, где урожайность находилась на уровне 1,20 и 1,41 т/га соответственно. Однако, на варианте A_2 ($N_{47}P_{30}K_{46}S_5$) в 2024 году с небольшой разницей выделился вариант с озимыми почвопокровными культурами.

Выводы. Таким образом, можно сделать вывод, что использование промежуточных почвопокровных культур в системах прямого сева является ключевым фактором оптимизации севооборотов. Такой подход не только очищает поля от сорняков и улучшает физические характеристики почвы, но и стимулирует её биологическую активность, обеспечивая большее накопление влаги и, в итоге приводит к повышению урожайности сельскохозяйственных культур.

Библиографический список:

1. Тойгильдин, А.Л. Севообороты для технологии прямого посева в условиях лесостепной зоны Среднего Поволжья / А.Л. Тойгильдин, О.Л. Кибалюк, И.А. Тойгильдина, Д.Э. Аюпов. // Ульяновск : Ульяновский государственный аграрный университет им. П.А. Столыпина, 2023. — 192 с. — ISBN 978-5-605-10710-1. — EDN SKILRZ.

- 2. Тойгильдин, А.Л. Научно-практическое обоснование биологизации земледелия лесостепной зоны Поволжья / А.Л. Тойгильдин, В.И. Морозов, М.И. Подсевалов, Д.Э. Аюпов, И.А. Тойгильдина // Ульяновск, 2020. 386 с. Текст: непосредственный.
- 3. Тойгильдин, А.Л. Эффективность технологии прямого посева ярового ячменя в условиях среднего Поволжья / А. Л. Тойгильдин, И. А. Тойгильдина, Д. Э. Аюпов [и др.] // Нива Поволжья. 2023. № 2(66). DOI 10.36461/NP.2023.66.2.016. EDN SZYQDE.

FORMATION OF SPRING RAPE HARVEST BY DIRECT SOWING IN THE CONDITIONS OF THE ULYANOVSK REGION

Friling S.S.

Keywords: Rapeseed, productivity, direct sowing

The work is devoted to the study of methods for increasing the productivity of spring rape using direct sowing technology in the conditions of the Ulyanovsk region.