УДК. 633.16

ВЛИЯНИЕ МИНЕРАЛЬНЫХ УДОБРЕНИЙ И ПРОМЕЖУТОЧНЫХ КУЛЬТУР НА ЗАСОРЕННОСТЬ АГРОЦЕНОЗОВ ПРИ ПРЯМОМ ПОСЕВЕ ЯРОВОГО ЯЧМЕНЯ

Богатов Е.А., Мельников А.М. Магистранты 3 курса факультета агротехнологий земельных ресурсов и пищевых производств Научный руководитель – Аюпов Д.Э., кандидат сельскохозяйственных наук ФГБОУ ВО Ульяновский ГАУ

Ключевые слова: яровой ячмень, засоренность посевов, пожнивные культуры, минеральные удобрения, прямой посев.

В статье приводятся данные по засоренности посевов ярового ячменя в условиях земледелия лесостепи Поволжья Ульяновской области в зависимости от уровня минерального питания и пожнивных культур при прямом посеве.

Введение. Нельзя признать поле культурным, если оно засорено. Нарушение агротехники приводит к массовому появлению сорных растений в посевах, так как в пахотном слое находятся большие запасы семян и вегетативных органов сорняков. Несмотря на применение современных методов борьбы с сорной растительностью, засоренность посевов остается достаточно высокой. Так, в Поволжском регионе на 100 выращиваемых растений, приходится около 150 видов сорных растений [1,2,3].

Для того, чтобы составить рациональную систему борьбы с сорными растениями необходимо иметь данные о видовом составе сорных растений, их количестве и массе.

Цель исследований. Изучить влияние минеральных удобрений и промежуточных культур на засоренность посевов ярового ячменя при технологии No-till.

Засоренность посевов ярового ячменя сорными растениями особенно при технологии прямого посева является одним из лимитирующих факторов, сдерживающих повышение урожайности и

качества зерна. Поэтому изучение сорняков ценоза и применение гербицидов в борьбе с ним в посевах представляет важное звено в системе фитосанитарных приемов, способствующих увеличению производства зерна [4].

В агрофитоценозах ячменя преобладали малолетние сорные растения, которые были в основном представлены яровыми ранними: марь белая — Chenopodium album L., горец вьюнковый - Poligonum convolvulus L., пикульник обыкновенный Galeopsis tetrahit L., просвирник пренебреженный — Malva neglecta Wallr., чистец малолетний - Stachys annua L., овсюг пустой - Avena fatua L., и яровыми поздними: просо сорнополевое - Panicum miliaceum ssp. Ruderale (Kitag.) и куриное просо Echinochloa crusgalli (L.) Beauv., щирица запрокинутая — Amaranthus retroflexus L.; щетинник зеленый Setaria viridis (L.) Веаиv. Наряду с этим встречались зимующие сорные растения: гулявник лезеля - Sisymbrium loeselii L., подмаренник цепкий - Gálium арагіпе L., ярутка полевая - Thláspi arvénse L., а также двулетние: липучка оттопыренная — Lappula squarrosa Retz. Из многолетников в посевах единично встречались осот полевой Sonchus arvensis L..

 Таблица
 1.
 Засоренность посевов ярового ячменя

 в технологии прямого посева в 2023 году

Удобрения	Промежуточные	Фаза кущения		Фаза колошения	
Фактор А	посевы Фактор В	шт./м ²	Γ/M^2	шт./м²	Γ/M^2
A_0	B_0	30,4	21,5	24,9	22,7
	B_1	30,9	20,8	24,6	21,6
	B_2	30,2	19,6	25,8	22,0
В среднем		30,5	20,6	25,1	22,1
A_1	B_0	29,3	24,4	21,5	25,1
	B ₁	28,6	25,7	22,7	26,5
	B_2	30,1	25,0	22,0	26,9
В среднем		29,3	25,0	22,1	26,2
A ₂	B_0	30,3	26,1	20,5	26,8
	B ₁	28,6	24,0	20,0	26,2
	B_2	29,7	25,8	21,8	25,3
В среднем		29,5	25,3	20,8	26,1

Так за 2023 год в фазу кущения (до обработки посевов гербицидами) засоренность посевов ячменя в варианте с внесением повышенной нормы минерального удобрения составила 29,7 шт./м²;

Материалы IX Международной студенческой научной конференции «В мире научных открытий»

28,6 и 30,3 шт./м² соответственно озимым, яровым промежуточным культурам и без пожнивных посевов. Так как особой разницы по засоренности между вариантами пожнивных культур мы не наблюдали, то в дальнейшем будем оперировать цифрами по среднему значению между этими вариантами, которые составили на повышенном фоне 29,5 шт./м² на среднем уровне питания 29,3 и без удобрений 30,5 шт./м² при массе сорняков 25,3 г/м²; 25,0 и 20,6 г/м² соответственно факторам B_2 ; B_1 и B_0 .

В опытах просматривается повышенная воздушно-сухой массы сорняков от интенсивного фона к безудобренному. К уборке количество сорняков уменьшалось до следующих значений на без удобренном варианте питания число сорняков было в среднем 25,1 шт./м 2 с воздушно сухой массой их 22,1 г/м 2 на нормальном варианте питания 22,1 шт./м 2 с массой 26,2 г/м 2 и на повышенном 20,8 шт./м 2 при массе 26,1 г/м 2 .

Выводы. Исходя из выше изложеного следует отметить, что наибольшая засоренность посевов среди изучаемых вариантов с удобрениями наблюдалась на полях с наименьшим количеством растений на единицу площади на безудобренном фоне. Большее количество растений ячменя и более мощное их развитие на удобренных вариантах сыграло положительную роль ы деле подавления сорного компонента агроценоза.

Сравнивая между собой пожнивные промежуточные посевы по засоренность агроценозов ячменя, особой разницы не выявлено. Но необходимо отметить, что с учетом численности сорняков в наших опытах (по шкале численности сорняков) посевы ячменя при прямом посеве по вариантам засорены в очень слабой и в слабой степени.

Библиографический список:

- 1. Прогноз вредоносности видов щетинника в агрофитоценозах с яровым ячменем / А. Л. Тойгильдин, Н. А. Хайртдинова, И. А. Тойгильдина [и др.] // Аграрная наука. -2024. -№ 4. C. 80-84.
- 2. Эффективность технологии прямого посева ярового ячменя в условиях среднего Поволжья / А. Л. Тойгильдин, И. А. Тойгильдина, Д. Э. Аюпов [и др.] // Нива Поволжья. -2023. -№ 2(66).

- 3. Тойгильдин, А.Л. Научно-практическое обоснование биологизации земледелия лесостепной зоны Поволжья / А.Л. Тойгильдин, В.И. Морозов, М.И. Подсевалов, Д.Э. Аюпов, И.А. Тойгильдина // Ульяновск, 2020. 386 с. Текст: непосредственный.
- 4. Севообороты для технологии прямого посева в условиях лесостепной зоны Среднего Поволжья / А. Л. Тойгильдин, О. Л. Кибалюк, И. А. Тойгильдина, Д. Э. Аюпов. Ульяновск : Ульяновский государственный аграрный университет им. П.А. Столыпина, 2023. 192 с.

THE EFFECT OF MINERAL FERTILIZERS AND INTERMEDIATE CROPS ON THE CONTAMINATION OF AGROCENOSES DURING DIRECT SOWING OF SPRING BARLEY

Bogatov E.A., Melnikov A.M. Scientific supervisor – Ayupov D.E. Ulyanovsk SAU

Keywords: spring barley, crop contamination, crop crops, mineral fertilizers, direct sowing.

The article provides data on the contamination of spring barley crops in the conditions of agriculture in the forest-steppe of the Volga region of the Ulyanovsk region, depending on the level of mineral nutrition and crop crops during direct sowing.