УДК 663.2

ВЫБОР ЧКД ДЛЯ ПРОИЗВОДСТВА КРАСНЫХ СТОЛОВЫХ ВИН ИЗ АБОРИГЕННОГО СОРТА ВИНОГРАДА КАЧИЧ

Качаева Н.Ю., кандидат технических наук, доцент, тел.: 89284278434, 9284278434@mail.ru
Скорик К.И., студент, тел.: 89189676245, skorik-kseni@mail.ru
ФГБОУ ВО «Кубанский государственный технологический университет»

Ключевые слова: винные дрожжи, ферментация, Качич, ЧКД, аборигенные сорта винограда, физико-химический анализ, Level2 Laktia $^{\mathsf{TM}}$

Винные дрожжи играют ключевую роль в процессе ферментации, влияя на ароматику, вкус, текстуру и стабильность вина. Разные штаммы дрожжей могут кардинально изменить характер вина, даже если используется один и тот же сорт винограда.

Введение. Многие аборигенные сорта лучше переносят засуху и морозы (например, Цимлянский черный устойчив к жаре), требуют меньшее количество обработок [1]. С ними можно эксперементировать и получать уникальные и сложные вина при помощи таких технологических процессов как выдержка в квеври / амфорах, производство оранжевых вин и игристых вин из редких сортов (Цимлянское игристое) [2]. Эти сорта могут стать особенностью их места культивирования. Грузия, к примеру, славится винами в квеври из Саперави и Хихви [3].

Saccharomyces cerevisiae - наиболее распространенный вид дрожжей, используемых в виноделии. Включает множество штаммов с разными свойствами, такими как универсальность, то есть подходят для красных, белых, розовых и игристых вин, высокая спиртоустойчивость (до 15-16% об.), чистый профиль ферментации (минимальные побочные ароматы).

Популярные штаммы:

- EC-1118 (Lalvin) выносливые, подходят для сложных условий, часто используют для игристых.
- D254 (Lalvin) усиливает фруктовость в красных винах (Каберне, Сира).
- QA23 (Lalvin) подчеркивает цитрусовые и тропические ноты в белых винах (Совиньон Блан, Шардоне).

Saccharomyces bayanus: устойчивы к высокому содержанию алкоголя и SO₂. Часто применяются для крепленых вин (херес, портвейн). Могут работать при низких температурах. Premier Cuvée (Red Star) – для шампанского и игристых. Vin13 (Anchor Yeast) – для сложных белых вин [4].

Дикие (аборигенные) дрожжи - естественные дрожжи, присутствующие на кожице винограда, дают более сложные, "терруарные" вина, но высокий риск неуправляемой ферментации. Используются в натуральном виноделии.

Для красных вин используют такие дрожжи, как RC-212 (Lalvin) – усиливает ягодные и пряные тона (Пино Нуар, Сира), ВМ 4×4 (Lallemand) – подходит для терруарных вин, подчеркивает минеральность, D21 (Lalvin) – мягкие танины, фруктовость (Мерло, Каберне) [5].

Для белых вин CY3079 (Lalvin) – создает маслянистую текстуру (Шардоне), VL3 (Lallemand) – сохраняет свежесть (Совиньон Блан, Рислинг), X5 (Anchor Yeast) – подчеркивает цветочные ноты (Мускаты, Гевюрцтраминер).

Для игристых и шампанского вин DV10 (Lalvin) — чистая ферментация, без побочных ароматов, EC-1118 — надежный выбор для вторичного брожения в бутылке.

Для натуральных и "оранжевых" вин используется спонтанная ферментация (дикие дрожжи + бочковая ферментация) либо дрожжи M05 (Mangrove Jack's) — гибридный штамм для контроля над "дикой" ферментацией.

Материалы и методы исследования. Аборигенный абхазский сорт винограда Качич был высажен и собран в Краснодарском крае. Были использованы три различных штамма дрожжей с целью установления лучшего сочетания. Измерена плотность сусла во время всего этапа брожения, проведен физико-химический анализ всех

образцов, а также выполнена дегустационная оценка выработанных виноматериалов, которые на данный момент выдерживаются в дубовых бочках, с целью стабилизация вина и получения лучших органолептических характеристик.

Приготовление красных сухих виноматериалов осуществляли по красному способу с отделением гребней. Брожение проводили на чистой культуре дрожжей D-254, FERMENTIS GVS107, LALVIN-V1116 с последующим дображиванием [6].

Таблица – Показатели плотности во время ферментации

День	Качич № 1		Качич № 2		Качич № 3	
	Показатели		Показатели		Показатели	
	pН	плотность	pН	плотность	pН	плотность
27.09	3,8	1071	3,7	1058	3,8	1119
28.09	3,8	1068	3,7	1038	3.5	1098
30.09	3,9	1050	3,5	1016	3,6	1075
2.10	3,9	1041	3,8	1010	3,7	1053
4.10	3,9	1035	3,8	1005	3,77	1023
6.10	3,8	1031	3,8	1001	3,77	1015
10.10	3.8	1022	3,8	1000	3,62	1004
13.10	3,65	1019	3,72	998	3,6	1001
18.10	3,8	1013	3,6	994	3,6	998
22.10	3,8	1010	3,65	993	3,6	995
29.10	3,8	1006	-	990	-	993
5.11	3,8	1003	-	<1000	-	<1000
12.11	3,9	<1000	-	<1000	-	<1000

На рисунке 1 отображены вненсения вспомогательных материалов в каждый из образцов на этапе брожения.

Level2 Laktia — это дрожжи, с помощью которых возможно управление кислотностью. Химическое подкисление изначально было единственным вариантом, но теперь можно использовать биологическую альтернативу для восстановления кислотности вина — это винные дрожжи не-Saccharomyces — Level2 LaktiaTM. Level2 LaktiaTM (Lachancea thermotolerans), были отобраны в Ла-Риоха, Испания в 2016 году. Level2 LaktiaTM преобразует глюкозу в молочную кислоту. Они могут производить 2-9 г / л молочной кислоты в зависимости от условий [7].

Результаты и их обсуждение. Было установлено, что образцы по физико-химическому анализу соответствуют требованиям нормативного документа. В таблице 1 предоставлены показатели

плотности в соответствии с днем измерения, начиная с первого дня ферментации.

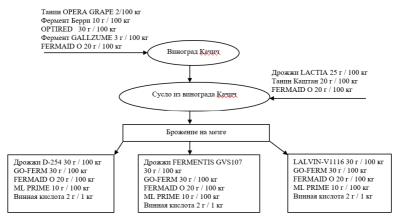


Рисунок 1 – Внесение вспомогательных материалов в сусло из винограда Качич

Лучше всего проявил себя образец 1, дрожжи D-254. Высокая спиртуозность и кислотность дают потенциал к длительной выдержке в дубовой бочке, при этом не выходят за рамки норм ГОСТа. Образец имеет высокое содержание фенольных соединений, что также является преимуществом среди других образцов, а также значительное содержание молочной кислоты, ЯМБ прошло успешно. Остальные показатели в соответствии с ГОСТ для сухих красных виноматериалов.

Комиссией независимых экспертов был определен лучший по органолептическим характеристикам также первый образец. Он обладает глубоким рубиновым оттенком с гранатовым отблеском. Медленно стекающие «ножки» указывают на высокую экстрактивность и спиртуозность вина. Достаточно плотное тело за счет высокого содержания фенольных соединений. Мякоть также окрашена, как и кожица, это обуславливает плотность тела и насыщенность цвета. Аромат умеренный, чувствуются черная смородина, вишня, табак. Послевкусие долгое, с тонами черного шоколада и специй, ощущается высокая кислотность и танины [8].

Выводы. На выбор дрожжей влияет то, какой тип вина хочет произвести винодел. В процессе уже самой ферментации необходимо соблюдать условия, при которых дрожжам будет комфортно работать, к примеру, соблюдение температурного режима (при низких/высоких температурах), их устойчивость к выделяемому в процессе брожения этиловому спирту, количество вносимого SO₂.

Необходимо работать с разными штаммами, чтобы получить фруктовые молодые вина (QA23, VL3), сложные выдержанные вина (RC-212, BM 4×4), натуральные вина с "диким" характером (аборигенные дрожжи), низкоградусные вина (в тренде легкие вина с 10-12% алкоголя). Выбор дрожжей – это искусство и наука.

Аборигенные сорта — это не только сохранение традиций, но и конкурентное преимущество. Их использование позволяет создавать вина с уникальным вкусом, закреплять региональный бренд, выходить на премиум-сегмент (за счет ограниченности и эксклюзивности партий), а также привлекать внимание сомелье и винных критиков.

Если у вас есть доступ к местным сортам — стоит экспериментировать, особенно в нише натуральных, терруарных и малосерийных, ограниченных по количеству, вин.

Библиографический список:

- 1. Скорик, К. И. Обоснование использования аборигенного сорта Качич в условиях виноделия Краснодарского края / К. И. Скорик, Н. Ю. Качаева // Молодежная наука. Сборник лучших научных работ молодых ученых : Материалы LI студенческой научной конференции, Краснодар, 29 февраля 21 2024 года. Краснодар: Кубанский государственный технологический университет, 2024. С. 419-422. EDN JJFBPV.
- 2. Влияние технологии переработки винограда на содержание антоцианов в красном вине / А. А. Дробь, С. М. Староверов, Г. Г. Васияров [и др.] // Плодоводство и виноградарство Юга России. -2021. -№ 71(5). C. 313-325. DOI 10.30679/2219-5335-2021-5-71-313-325. EDN WNPTPF.
- 3. Ageeva, N. M. Biotechnologies used to deal with recycling of grape pomace / N. M. Ageeva, A. N. Tikhonova, E. V. Globa // IOP Conference Series: Earth and Environmental Science: International Conference on

- Production and Processing of Agricultural Raw Materials (P2ARM 2021), Воронеж, 21–24 сентября 2021 года. Vol. 1052. Воронеж: IOP Publishing Ltd, 2022. P. 012102. DOI 10.1088/1755-1315/1052/1/012102
- 4. Агеева, Н. М. Фенольные соединения натуральных сухих вин в зависимости от технологии производства / Н. М. Агеева, А. В. Чаплыгин, В. Я. Одарченко // Виноделие и виноградарство. -2006. -№ 3. C. 31. EDN PDVNLV.
- 5. Скорик, К. И. Расширение винодельческой продукции с помощью автохтонных сортов / К. И. Скорик, Н. Ю. Качаева // Биотехнология: взгляд в будущее: МАТЕРИАЛЫ X МЕЖДУНАРОДНОЙ НАУЧНО-ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ, Ставрополь, 29 апреля 2024 года. Ставрополь: Ставропольский государственный медицинский университет, 2024. С. 80-82. EDN OHOGCU.
- 6. Бойко, И. Е. Антиоксидантные свойства фенольных соединений красных вин / И. Е. Бойко // Материалы XXIX Недели науки МГТУ, Майкоп, 02–09 декабря 2014 года. Майкоп: Индивидуальный предприниматель Кучеренко Вячеслав Олегович, 2014. С. 32-36
- 7. Скорик, К. И. Обоснование использования аборигенного сорта Качич в условиях виноделия Краснодарского края / К. И. Скорик, Н. Ю. Качаева, М. В. Бигвава // Молодежная наука развитию агропромышленного комплекса: материалы IV Международной научно-практической конференции студентов, аспирантов и молодых ученых, Курск, 15 ноября 2023 года. Курск: Курский государственный аграрный университет имени И.И. Иванова, 2024. С. 8-11. EDN JLVDDU.
- 8. Чурсина, О. А. Стабилизация вин: наука и практика / О. А. Чурсина, В. А. Загоруйко; Союз виноделов Крыма. Симферополь: Полипринт, 2023. 280 с. ISBN 978-5-6048939-5-1. EDN DPJERT.

THE CHOICE OF YEASTS FOR THE PRODUCTION OF RED TABLE WINES FROM THE INDIGENOUS GRAPE VARIETY KACHICH

Kachaeva N.Y., Skorik K.I.

Keywords: wine yeast, fermentation, Kachich, Pure Yeasts Culture, native grape varieties, physico-chemical analysis, Level2 LaktiaTM

Wine yeast plays a key role in the fermentation process, affecting the aromatics, taste, texture and stability of wine. Different yeasts strains can dramatically change the character of a wine, even if the same grape variety is used.