doi:10.18286/1816-4501-2025-3-37-44

УДК 633.111:631.95

# Влияние минеральных макро- и микроудобрений и биопрепарата на урожайность и качество зерна сортов озимой пшеницы в условиях Нижегородской области

- Л. К. Петров, кандидат сельскохозяйственных наук, старший научный сотрудник
- **А. В. Ивенин**<sup>⊠</sup>, доктор сельскохозяйственных наук, ведущий научный сотрудник, профессор кафедры «Земледелие и растениеводство»
- **В. В. Ивенин,** доктор сельскохозяйственных наук, профессор, заведующий кафедрой «Земледелие и растениеводство»
  - С. М. Голубев, аспирант кафедры «Земледелие и растениеводство»
- ФГБОУ ВО Нижегородский государственный агротехнологический университет им. Л.Я. Флорентьева

603107, г. Нижний Новгород, пр. Гагарина,97

<sup>™</sup>a.v.ivenin@mail.ru

Резюме. Для изучения влияния минеральных макро - и микроудобрений и биопрепарата на рост, развитие, формирование урожайности и качества зерна сортов озимой пшеницы в условиях светло-серых лесных почв Нижегородской области в 2022-2024 гг. был проведен в полевой опыт, который был заложен по трехфакторной схеме: Фактор А – сорта: 1) Московская 39 (St), 2) Московская 40, 3) Московская 56, 4) Московская 82, 5) Немчиновская 17, 6) Немчиновская 57, 7) Немчиновская 85. Фактор Б: 1) без обработки (б/о\*); 2) внекорневая подкормка растений в фазу кущения озимой пшеницы препаратом Нанокремний- 5 мл/на 10 л воды (в/п Si\*); 3) инокуляция семян препаратом Восток ЭМ-1 (о/с Восток ЭМ-1\*); 4) внекорневая подкормка растений в фазу кущения озимой пшеницы препаратом Восток ЭМ-1-5 мл/10 л воды (в/п Восток ЭМ-1\*). Фактор С: 1) без внесения минеральных удобрений; 2)  $N_{60}P_{30}K_{30}$ ; 3)  $N_{120}P_{60}K_{60}$  Максимальная средняя урожайность получена у сорта Московская 82 – 7,01 т/га, что на 20,7 % больше контрольного сорта Московская 39. Наибольшее влияние на продуктивность из всех изучаемых в опыте факторов оказали минеральные удобрения: фон  $N_{120}P_{60}K_{60}$  кг.д.в. на га., обеспечил в среднем на 2,48...11,23 % выше контроля. От внекорневой обработки растений биопрепаратом Восток ЭМ-1 в период кущения получена максимальная прибавка, по сравнению с вариантами без обработок – 10,4...15,0 и 2,9...11,1 % соответственно. По содержанию белка и сырой клейковины выделился сорт Московская 40 со средними значениями показателей по годам исследования – 17,2 и 31,5 % соответственно. Масса 1000 зерен была наибольшей у сорта Московская 82 - в среднем 57,3 г.

**Ключевые слова:** озимая пшеница, сорта, урожайность, белок, клейковина, биопрепарат, микроудобрение, минеральные удобрения, урожайность.

Для цитирования: Влияние минеральных макро- и микроудобрений и биопрепарата на урожайность и качество зерна сортов озимой пшеницы в условиях Нижегородской области / Л. К. Петров, А. В. Ивенин, В. В. Ивенин и др. // Вестник Ульяновской государственной сельскохозяйственной академии. 2025. №3 (71). С. 37-44. doi:10.18286/1816-4501-2025-3-37-44

# The influence of mineral macro- and micro fertilizers and a biopreparation on the yield and grain quality of winter wheat varieties in Nizhny Novgorod region

# L. K. Petrov, A. V. Ivenin<sup>™</sup>, V. V. Ivenin, S. M. Golubev

Federal State Budgetary Educational Institution of Higher Education Nizhny Novgorod State Agrotechnological University named after L.Ya. Florentyev

603107, Nizhny Novgorod, Gagarin Ave., 97

<sup>™</sup>a.v.ivenin@mail.ru

**Abstract.** To study the effect of mineral macro- and micro fertilizers and a biopreparation on growth, development, formation of yield and grain quality of winter wheat varieties in the conditions of light gray forest soils of the Nizhny Novgorod region in 2022-2024, a field experiment was carried out which was laid out according to a three-factor scheme: Factor A - varieties: 1) Moskovskaya 39 (St), 2) Moskovskaya 40, 3) Moskovskaya 56, 4) Moskovskaya 82, 5) Nemchinovskaya 17, 6) Nemchinovskaya 57, 7) Nemchinovskaya 85. Factor B: 1) no treatment; 2) foliar feeding of plants in the tillering phase of winter wheat with the preparation Nanokremniy- 5 ml / per 10 l of water (Si \*); 3) seed inoculation

with the preparation Vostok EM-1 (Vostok EM-1 \*). 4) foliar feeding of plants in the tillering phase of winter wheat with Vostok EM-1 - 5 ml / 10 l of water (Vostok EM-1 \*). Factor C: 1) without application of mineral fertilizers; 2)  $N_{60}P_{30}K_{30}$ ; 3)  $N_{120}P_{60}K_{60}$ . The maximum average yield was obtained for Moskovskaya 82 variety - 7.01 t / ha, which is 20.7% more than the control variety Moskovskaya 39. Mineral fertilizers had the greatest impact on productivity of all the factors studied in the experiment: the background of  $N_{120}P_{60}K_{60}$  kg active ingredient per ha, provided an average of 2.48-11.23% higher than the control. The foliar treatment of plants with the biopreparation Vostok EM-1 during the tillering period resulted in the maximum increase compared to the variants without treatments - 10.4-15.0 and 2.9-11.1%, respectively. Moskovskaya 40 variety stood out in terms of protein and crude gluten content with average values for the years of the study - 17.2 and 31.5%, respectively. The mass of 1000 grains was the highest for Moskovskaya 82 variety - an average of 57.3 g.

**Keywords:** winter wheat, varieties, yield, protein, gluten, biopreparation, microfertilizer, mineral fertilizers, yield **For citation:** The influence of mineral macro- and micro fertilizers and a biopreparation on the yield and grain quality of winter wheat varieties in Nizhny Novgorod region / L. K. Petrov, A. V. Ivenin, V. V. Ivenin, et al. // Vestnik of Ulyanovsk state agricultural academy. 2025;3(71): 37-44 doi:10.18286/1816-4501-2025-3-37-44

Работа выполнена при поддержке Минобрнауки РФ в рамках Государственного задания «Разработка системы удобрения и защиты растений для технологий высокопродуктивного и экологически чистого производства зерновых, зернобобовых и масличных культур» (тема: № НИР в Рег. № НИР в ЕГИСУ НИОКТР: 1024072200018-5-4.1.6).

#### Введение

От уровня развития зернового производства зависит и эффективность функционирования всего агропромышленного комплекса, и продовольственная безопасность страны, и уровень жизни населения в целом. Обширный ареал распространения озимой пшеницы в России обеспечивает ее большой продуктивный потенциал и эффективность использования почвенно-климатических ресурсов [1, 2, 3].

В Нижегородской области в последние годы около 50 % площадей представлены зерновыми культурами, важнейшей из которых является озимая пшеница. Эта культура занимает около 87 % площадей озимых, однако сортимент ее небольшой и примерно на 38 % представлен сортом — Московская 39, поэтому поиск новых сортов, которые могут достойно заменить данный сорт, является актуальным [4, 5].

Изучение межсортовой изменчивости озимой пшеницы, проходившее в Нижегородском НИИСХ в 2012-2016 гг., позволило выявить сорта, наиболее адаптированные к условиям Нижегородской области и рекомендуемые к возделыванию в данном регионе [5, 6, 7].

Проблема успешного развития зерновой отрасли может быть решена, в том числе за счет внесения оптимальных доз минеральных макро- и микроудобрений, биопрепаратов, проведения различных видов обработок растений и семян, обеспечивающих оптимальное питание растений и улучшающих агроэкологическую ситуацию в агроценозах [8, 9,10].

С начала 80 годов XX века развитие сельскохозяйственной биотехнологии способствовало созданию концепции технологии эффективных микроорганизмов (ЭМ), которые в совокупности выполняют весь спектр функций по питанию растений, их защите от болезней и оздоровлению почвенной среды. К эффективным микроорганизмам можно отнести следующие группы обитателей почвы: фотосинтезирующие бактерии, молочнокислые бактерии, азотофиксирующие микроорганизмы, дрожжи, ферментирующие грибы, актиномицеты [11, 12,13].

На сегодняшний день проведено много исследований по повышению качества и увеличению урожайности сельскохозяйственных культур при использовании биологических препаратов и бактериальных удобрений. Так, в Смоленской ГСХА изучено действие таких препаратов, как Байкал ЭМ-1, Эпин, Агат, Новосил. В Сибирском ИФИБР СО РАН доказана эффективность действия бактериальных удобренийазотобактерина, фосфобактерина, кремнебактерина. Опыты в Рязанской ГСХА показали, что аммонификаторы и целлюлозоразлагающие бактерии повышают уровень плодородия почвы. Многие исследования также подтвердили эффективность использования биопрепаратов при обработке посевного материала зерновых культур, а опыты, проведенные в Ульяновской ГСХА, выявили, что препарат Байкал ЭМ- 1 при обработке семян повышает урожайность ячменя на 6...10 %, сахарной свеклы – на 13...21 % [13,14].

Настоящее время – это время перехода в сельском хозяйстве от химического к органическому ЭМземледелию. Данная технология применяется более чем в 140 странах мира, включая такие как США, Германия, Франция, Великобритания, Южная Корея, Италия, Испания. Следует помнить, что ощутимые результаты при этом могут быть получены через 2...3 года, а до этого времени затраты на ЭМ-технологии высокие, поэтому рекомендуется переходить на агроэкологию постепенно, разделив поля на отдельные участки. [13, 15].

Сейчас в растениеводстве стали достаточно широко применяться *кремниевые удобрения*. Общепризнана положительная роль кремния (Si) в стимулировании роста и развития растений - он оказывает

существенное влияние на их рост, развитие, повышает урожайность и улучшает качество продукции. Особенно важен он в стрессовых условиях: в частности, снижает опасность полегания посевов, а также поражения их болезнями и вредителями. В растениях он распределяется неравномерно. Поглощение кремния листьями составляет 30-40 %, а корневой системой — 1...5 %.

Одной из важных функций активных форм Si является стимуляция развития корневой системы. Исследования на злаковых, овощных, кормовых, цитрусовых культурах показали, что при улучшении кремниевого питания растений увеличивается количество вторичных и третичных корешков на 20...100 % [15, 16, 17].

Внедрение современных сортов озимой пшеницы и передовых технологий их возделывания, опирающихся на современную систему применение минеральных микро- макроудобрений, систему защиты с использованием биологических препаратов – важный вопрос современной науки.

Цель исследований — изучить влияние минеральных макро - и микроудобрений и биопрепарата на рост, развитие, формирование урожайности и качества зерна наиболее перспективных сортов озимой пшеницы селекции ФИЦ «Немчиновка» в условиях светло-серых лесных почв Нижегородской области.

В задачи исследований входило определение закономерности формирования урожайности изучаемых сортов и показателей качества зерна озимой пшеницы в зависимости от минеральных удобрений и биопрепарата в условиях светло-серых лесных почв Нижегородской области.

### Материалы и методы

Исследования проводили на опытном поле Нижегородского НИИСХ — подразделения Нижегородского государственного агротехнологического университета им. Л.Я. Флорентьева. В статье представлены результаты исследований по изучению урожайности и показателей качества зерна сортов озимой пшеницы за 2022-2024 гг., на светло-серой лесной среднесуглинистой почве. На момент закладки опыта почва имела следующую агрохимическую характеристику: обеспеченность пахотного слоя подвижными формами фосфора и калия очень высокая — (252,0 и 221,0 мг/кг почвы, соответственно), с низким содержание гумуса —1,43 %, реакция почвенной среды слабокислая (рН — 5,1). Предшественник — чистый пар.

Полевой опыт был заложен по трехфакторной схеме: Фактор А - сорта: 1) Московская 39, 2) Московская 40, 3) Московская 56, 4) Московская 82, 5) Немчиновская 17, 6) Немчиновская 57, 7) Немчиновская 85. За стандарт был взят сорт Московская 39.Фактор Б — обработка препаратами Восток ЭМ-1 и нанокремнием: 1) без обработки (б/о\*); 2) внекорневая подкормка растений в фазу кущения озимой пшеницы препаратом Нанокремний —5 мл/на 10 л

воды (в/п Si\*); 3) опрыскивание семян препаратом Восток ЭМ-1 (о/с Восток ЭМ-1\*); 4) внекорневая подкормка растений в фазу кущения озимой пшеницы препаратом Восток ЭМ-1- 5 мл/10 л воды (в/п Восток ЭМ- 1\*). Фактор С - фон минерального питания: 1) без внесения минеральных удобрений; 2)  $N_{60}P_{30}K_{30}$ ; 3)  $N_{120}P_{60}K_{60}$ .

Агротехника возделывания: под предпосевную культивацию, проводимой АКШ-4,2 на глубину заделки семян (4...6 см) вносили минеральные удобрения (диаммофоска10:26:26) согласно схемы непосредственно перед севом. Норма высева (н.в.) сортов озимой пшеницы составляла 4,5 млн. всхожих семян на гектар. Протравливания посевного материала во всех вариантах проводили препаратами: фунгицидом СтингерТрио (доза 0,5 л/т) и инсектицидом Имидор Про (доза 1 л/т). Посев осуществляли в оптимальные сроки в Нижегородской области с 1 по 10 сентября по годам исследования сеялкой ССФК-7.Общая площадь делянки составила 12,4 м<sup>2</sup>, учетная — 11,0 м<sup>2</sup>. Делянки в опыте располагались систематически со смещением. Повторность четырехкратная. Уход за посевами включал весеннюю подкормку аммиачной селитрой (34,4 %) в дозах, согласно схеме опыта (вручную поделяеночно) с последующей заделкой их зубовыми боронами. Перед уборкой проводили видовую и сортовую прочистку. Уборку проводили поделяночно прямым комбайнированием «Сампо 130» в фазу полной спелости зерна.

Поставленные цели и задачи исследований решались путем постановки полевого опыта и лабораторных экспериментов в соответствии с методикой государственного сортоиспытания сельскохозяйственных культур (Методика государственного сортоиспытания сельскохозяйственных культур. Выпуск второй. Зерновые, крупяные, зернобобовые, кукуруза и кормовые культуры. М., 1989. 194 с.). Количество и качество сырой клейковины определяется по ГОСТ 54478-2011) (ГОСТ 54478-2011. Зерно. Методы определения количества и качества сырой клейковины в пшенице. М. Стандарт и информация. 2012. 24 с.). Математическая обработка данных проведена методом дисперсионного анализа по Б.А. Доспехову, с использованием компьютерной программы «Statist» (Доспехов Б.А. Методика полевого опыта с основами статистической обработки результатов исследований. 5-изд., доп. и перераб. М. Агропромиздат, 1985. 351 с.).

#### Результаты

За годы исследований установлено, что среди сортов максимальная средняя урожайность озимой пшеницы получена у сортов Московская 82 и Немчиновская 85 - 7,01 и 6,10 т/га, что соответственно на 20,7 и 5,0 % больше контрольного сорта Московская 39 с урожайностью 5,81 т/га. Минеральные удобрения оказали наибольшее из всех изучаемых факторов влияние на урожайность озимой пшеницы. При этом выделился фон удобрений -  $N_{120}P_{60}K_{60}$ ,

продуктивность вариантов которого в среднем на 2,48...11,23 % выше контроля без применения минеральных удобрений (б/у). Урожайность изучаемой культуры по фону  $N_{60}P_{30}K_{30}$  была выше естественного фона, без внесения минеральных удобрений в среднем на 0,07...7,12 % (табл. 1).

При рассмотрении видов обработок растений и семян биопрепаратом и микроудобрением Нанокремний выявлено, что наибольшая прибавка урожайности при этом получена также на удобренных фонах. На фонах  $N_{60}P_{30}K_{30}$  и  $N_{120}P_{60}K_{60}$  от внекорневой обработки биопрепаратом Восток ЭМ-1 в период кущения прибавка по сравнению с естественным фоном без внесения удобрений составляла соответственно 2,9...11,1 % и 10,4...15,0 %; от предпосевной обработки семян биопрепаратом Восток ЭМ-1— 2,8...9,1 % и 2,1...11,4 %: от внекорневой обработки Нанокремнием (Si) в период кущения о,1...8,8 % и 1,9...9,4 %, на варианте без обработок — 0,2...6,7 и 0,6...8,0 %(табл. 1).

По содержанию качественных показателей зерна — белка и сырой клейковины среди сортов озимой пшеницы выделился сорт Московская 40 со средними значениями изучаемых показателей по годам исследований 17,2 и 31,5 %. При этом у контрольного сорта Московская 39 данные показатели

составляли14,5 и 24,3 %, что соответственно меньше — на 2,7 и 7,2 % (по абсолютной величине). Изучаемые качественные показатели у других анализируемых сортов озимой пшеницы были меньше даже контрольного сорта. Минеральные удобрения оказали наибольшее влияние из всех изучаемых факторов на показатели качества озимой пшеницы. При этом в равной степени выделились второй и третий фоны удобрений, где среднее значение белка составило 15,1 и 15,2 %, что на 1,5 и 1,6 % больше, чем на естественном фоне, без внесения (табл. 1).

При рассмотрении видов внекорневых обработок растений и протравливании семян выявлено, что наибольшая прибавка показателей качества зерна при этом получена на удобренных фонах. На обоих фонах минерального питания  $N_{60}P_{30}K_{30}$  и  $N_{120}P_{60}K_{60}$  от внекорневой обработки биопрепаратом Восток ЭМ-1 в период кущения прибавка по содержанию белка и сырой клейковины по сравнению с естественным фоном, без внесения минеральных удобрений составляла в среднем соответственно 0,1...0,2 и 0,4...0,9%; от предпосевной обработки семян биопрепаратом ВостокЭМ-1— 0,1...0,2 и 0,5...0,6%; от внекорневой обработки Нанокремнием (Si) в период кущения – 0,1...0,1 и 0,3...0,6%; на варианте без обработок - 0,1...0,2 и 0,3...0,5%.

Таблица 1. Урожайность и показатели качества зерна сортов озимой пшеницы в зависимости от минеральных макро - и микроудобрений, биопрепарата в среднем за 2022-2024 гг.

| Сорт<br>(фактор<br>А)                    | Фон мине-<br>ральных<br>удобрений<br>(фактор С)    | Характеристика вари-<br>анта*<br>(фактор Б) | Урожай-<br>ность,<br>т/га | Масса<br>1000<br>зерен, г | Содержание, % |                 |
|------------------------------------------|----------------------------------------------------|---------------------------------------------|---------------------------|---------------------------|---------------|-----------------|
|                                          |                                                    |                                             |                           |                           | белка         | клейко-<br>вины |
| Москов-<br>ская 39                       | без удобре-<br>ний                                 | б/о                                         | 5,37                      | 47,8                      | 13,8          | 24,1            |
|                                          |                                                    | в/п Si                                      | 5,63                      | 47,8                      | 13,9          | 24,0            |
|                                          |                                                    | о/с Восток ЭМ-1                             | 5,72                      | 48,0                      | 14,3          | 24,1            |
|                                          |                                                    | в/п Восток ЭМ-1                             | 5,93                      | 48,1                      | 13,9          | 24,0            |
|                                          | N <sub>60</sub> P <sub>30</sub> K <sub>30</sub>    | б/о                                         | 5,50                      | 48,2                      | 13,4          | 24,1            |
|                                          |                                                    | в/п Si                                      | 5,71                      | 47,6                      | 14,1          | 24,2            |
|                                          |                                                    | о/с Восток ЭМ-1                             | 6,12                      | 48,8                      | 13,4          | 24,3            |
|                                          |                                                    | в/п Восток ЭМ-1                             | 6,10                      | 48,7                      | 15,1          | 24,4            |
|                                          | N <sub>120</sub> P <sub>60</sub> K <sub>60</sub> - | б/о                                         | 5,83                      | 48,2                      | 15,7          | 24,5            |
|                                          |                                                    | в/п Si                                      | 5,99                      | 48,5                      | 15,4          | 24,5            |
|                                          |                                                    | o/с Восток ЭМ-1                             | 6,01                      | 48,7                      | 14,9          | 24,8            |
|                                          |                                                    | в/п Восток ЭМ-1                             | 5,92                      | 49,3                      | 15,7          | 24,9            |
| Москов-<br>ская 40                       | без удобре-<br>ний                                 | б/о                                         | 4,89                      | 48,8                      | 17,1          | 30,8            |
|                                          |                                                    | в/п Si                                      | 4,95                      | 49,0                      | 17,2          | 31,0            |
|                                          |                                                    | o/с Восток ЭМ-1                             | 5,00                      | 49,0                      | 16,8          | 31,2            |
|                                          |                                                    | в/п Восток ЭМ-1                             | 5,01                      | 48,4                      | 17,5          | 31,9            |
|                                          | N <sub>60</sub> P <sub>30</sub> K <sub>30</sub>    | б/о                                         | 4,89                      | 48,5                      | 17,2          | 31,5            |
|                                          |                                                    | в/п Si                                      | 5,00                      | 48,6                      | 17,5          | 31,5            |
|                                          |                                                    | о/с Восток ЭМ-1                             | 5,25                      | 48,8                      | 17,2          | 31,6            |
|                                          |                                                    | в/п Восток ЭМ-1                             | 5,45                      | 48,1                      | 17,4          | 31,8            |
|                                          | N <sub>120</sub> P <sub>60</sub> K <sub>60</sub>   | б/о                                         | 5,17                      | 49,0                      | 17,0          | 31,5            |
|                                          |                                                    | в/п Si                                      | 5,14                      | 48,8                      | 16,9          | 31,5            |
|                                          |                                                    | о/с Восток ЭМ-1                             | 5,36                      | 48,5                      | 17,4          | 31,3            |
|                                          |                                                    | в/п Восток ЭМ-1                             | 5,60                      | 49,3                      | 17,6          | 31,8            |
| Москов-<br>ская 56<br>Москов-<br>ская 56 | без удобре-<br>ний                                 | б/о                                         | 5,06                      | 49,3                      | 16,2          | 26,9            |
|                                          |                                                    | в/п Si                                      | 5,33                      | 51,0                      | 16,0          | 27,7            |
|                                          |                                                    | о/с Восток ЭМ-1                             | 5,44                      | 52,8                      | 15,9          | 27,2            |
|                                          |                                                    | в/п Восток ЭМ-1                             | 5,40                      | 53,1                      | 16,3          | 27,4            |
|                                          | N <sub>60</sub> P <sub>30</sub> K <sub>30</sub>    | 6/o                                         | 5,19                      | 52,3                      | 14,8          | 27,5            |

| I                    |                                                  |                                                  | в/п Si                             | 5,20         | 52,1         | 15,3         | 27,7         |
|----------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------|--------------|--------------|--------------|--------------|
|                      |                                                  | ŀ                                                | о/с Восток ЭМ-1                    | 5,39         | 52,1         | 15,5         | 27,3         |
|                      |                                                  |                                                  | в/п Восток ЭМ-1                    | 5,68         | 52,6         | 15,9         | 27,7         |
|                      |                                                  |                                                  | б/о                                | 5,25         | 52,7         | 14,9         | 27,6         |
|                      | N <sub>120</sub> P                               | P <sub>60</sub> K <sub>60</sub>                  | в/п Si                             | 5,30         | 52,8         | 15,0         | 27,3         |
|                      |                                                  |                                                  | о/с Восток ЭМ-1<br>в/п Восток ЭМ-1 | 5,70<br>6,00 | 52,9<br>53,0 | 15,4<br>15,7 | 27,6<br>28,0 |
|                      |                                                  |                                                  | 6/0                                | 6,23         | 54,0         | 14,3         | 24,6         |
|                      | без уд                                           | iopue-                                           | в/п Si                             | 6,36         | 56,3         | 15,0         | 24,5         |
|                      | осз уд<br>Ни                                     |                                                  | о/с Восток ЭМ-1                    | 6,47         | 56,6         | 14,2         | 24,5         |
|                      |                                                  |                                                  | в/п Восток ЭМ-1                    | 6,82         | 56,8         | 14,5         | 24,6         |
| •                    |                                                  |                                                  | б/о                                | 6,68         | 57,5         | 14,0         | 24,0         |
| Москов-              | N. D                                             | <sub>30</sub> K <sub>30</sub>                    | в/п Si                             | 6,91         | 57,5         | 14,4         | 24,1         |
| ская 82              | 1 <b>1</b> 60F                                   | 30 <b>N</b> 30                                   | о/с Восток ЭМ-1                    | 6,93         | 57,7         | 13,9         | 24,2         |
| -                    |                                                  |                                                  | в/п Восток ЭМ-1                    | 7,21         | 58,1         | 14,2         | 24,5         |
|                      |                                                  |                                                  | б/о<br>/ s:                        | 6,65         | 58,2         | 13,6         | 24,4         |
|                      | N <sub>120</sub> P                               | P <sub>60</sub> K <sub>60</sub>                  | в/п Si                             | 6,96         | 57,6         | 13,6         | 24,5         |
|                      | 120                                              | -                                                | о/с Восток ЭМ-1                    | 7,35<br>7,84 | 58,6<br>59,0 | 13,8<br>14,1 | 24,7<br>24,9 |
|                      |                                                  |                                                  | в/п Восток ЭМ-1<br>б/о             | 4,84         | 50,8         | 13,8         | 25,2         |
|                      | бозуп                                            | цобре-<br>ий                                     | в/п Si                             | 4,93         | 50,7         | 13,8         | 25,2         |
|                      | оез уд<br>Ни                                     |                                                  | о/с Восток ЭМ-1                    | 4,96         | 50,3         | 15,0         | 25,4         |
|                      | ,                                                |                                                  | в/п Восток ЭМ-1                    | 4,97         | 51,4         | 15,2         | 26,1         |
| 11                   |                                                  |                                                  | б/о                                | 4,63         | 50,7         | 15,2         | 26,2         |
| Немчи-               | $N_{60}P_{30}K_{30}$                             |                                                  | в/п Si                             | 5,26         | 50,8         | 15,4         | 26,0         |
| нов -<br>ская 17     | 1N <sub>60</sub> P                               | 30 <b>N</b> 30                                   | о/с Восток ЭМ-1                    | 5,23         | 51,0         | 15,5         | 26,8         |
| CNU/II               |                                                  |                                                  | в/п Восток ЭМ-1                    | 5,25         | 50,9         | 15,7         | 27,5         |
|                      |                                                  |                                                  | б/о                                | 4,94         | 51,3         | 14,6         | 27,1         |
|                      | N <sub>120</sub> F                               | °60K60                                           | в/п Si                             | 5,09         | 51,2         | 14,3         | 26,5         |
|                      | 120                                              | -                                                | o/с Восток ЭМ-1                    | 5,20         | 51,0         | 14,6         | 27,0         |
|                      |                                                  |                                                  | в/п Восток ЭМ-1                    | 5,42         | 51,1         | 14,8         | 26,8         |
|                      | 602 V.5                                          | 10600                                            | б/о<br>в/п Si                      | 4,90<br>5,16 | 50,6<br>50,9 | 14,6<br>14,3 | 26,5<br>26,4 |
|                      | без уд<br>ни                                     |                                                  | о/с Восток ЭМ-1                    | 5,50         | 50,8         | 14,5         | 25,7         |
|                      |                                                  |                                                  | в/п Восток ЭМ-1                    | 5,64         | 51,2         | 14,3         | 26,2         |
| 11-                  |                                                  |                                                  | 6/o                                | 5,61         | 50,5         | 14,3         | 26,0         |
| Немчи-               | NI D                                             | V                                                | в/п Si                             | 5,58         | 51,9         | 14,2         | 26,2         |
| нов<br>ская 57       | $N_{60}P_{30}K_{30}$                             |                                                  | о/с Восток ЭМ-1                    | 5,72         | 52,2         | 14,7         | 25,9         |
| CNON 3/              |                                                  |                                                  | в/п Восток ЭМ-1                    | 5,80         | 52,6         | 15,0         | 26,0         |
|                      |                                                  | Ţ                                                | б/о                                | 5,30         | 52,2         | 14,2         | 25,7         |
|                      | N <sub>120</sub> P <sub>60</sub> K <sub>60</sub> |                                                  | в/п Si                             | 5,39         | 52,3         | 14,6         | 25,7         |
|                      |                                                  |                                                  | o/с Восток ЭМ-1                    | 6,10         | 52,5         | 14,2         | 25,9         |
|                      |                                                  |                                                  | в/п Восток ЭМ-1                    | 6,47         | 52,9         | 14,5         | 26,2         |
|                      | 502 V                                            | io6no                                            | б/о<br>в/п Si                      | 5,34<br>6,05 | 51,5<br>50,3 | 14,0<br>14,5 | 25,6<br>25,8 |
|                      | без уд                                           | цооре- <u> </u><br>ий                            | о/с Восток ЭМ-1                    | 6,17         | 50,3         | 14,5         | 25,8         |
|                      | rıv                                              | '7'                                              | в/п Восток ЭМ-1                    | 6,19         | 51,2         | 15,2         | 26,5         |
|                      |                                                  |                                                  | 6/o                                | 5,90         | 50,5         | 15,3         | 25,8         |
| Немчи-               | N <sub>60</sub> P <sub>30</sub> K <sub>30</sub>  |                                                  | в/п Si                             | 5,97         | 50,6         | 15,6         | 26,0         |
| нов-ская<br>85       |                                                  |                                                  | о/с Восток ЭМ-1                    | 6,05         | 51,0         | 15,7         | 25,9         |
| 65                   |                                                  |                                                  | в/п Восток ЭМ-1                    | 6,14         | 51,7         | 16,2         | 26,3         |
|                      | N <sub>120</sub> P <sub>60</sub> K <sub>60</sub> |                                                  | 6/0                                | 5,81         | 51,6         | 15,6         | 26,4         |
|                      |                                                  |                                                  | в/п Si                             | 5,89         | 51,7         | 15,4         | 26,2         |
|                      |                                                  |                                                  | o/с Восток ЭМ-1                    | 6,33         | 51,8         | 15,6         | 26,0         |
|                      |                                                  |                                                  | в/п Восток ЭМ-1                    | 6,48         | 52,1         | 16,3         | 26,9         |
|                      |                                                  | <del>                                     </del> | Московская 39<br>Московская 40     | 5,80<br>5,07 | 49,1<br>48,7 | 14,5<br>17,2 | 24,3<br>31,4 |
|                      |                                                  | <u> </u>                                         | Московская 40                      | 5,45         | 52,2         | 15,6         | 27,5         |
| среднее п            |                                                  | Московская 56                                    |                                    | 6,91         | 57,3         | 14,4         | 24,8         |
| тору                 | A                                                | Немчиновская 17                                  |                                    | 5,04         | 50,9         | 14,7         | 26,3         |
| -                    |                                                  | Немчиновская 57                                  |                                    | 5,60         | 51,8         | 14,4         | 26,1         |
|                      |                                                  |                                                  | Немчиновская 85                    | 6,10         | 51,5         | 15,3         | 26,0         |
| среднее по фактору В |                                                  |                                                  | без удобрений                      | 5,59         | 57,3         | 15,0         | 26,3         |
|                      |                                                  | N <sub>60</sub> P <sub>30</sub> K <sub>30</sub>  |                                    | 5,77         | 51,5         | 15,2         | 26,4         |
| тору                 | ر                                                |                                                  | $N_{120}P_{60}K_{60}$              | 5,86         | 52,2         | 15,4         | 26,9         |
| среднее по фактору С |                                                  |                                                  | б/о                                | 5,43         | 53,5         | 14,9         | 26,4         |
|                      |                                                  | в/п Si                                           |                                    | 5,64         | 53,6         | 15,1         | 26,5         |
|                      |                                                  | o/с Восток ЭМ-1<br>в/п Восток ЭМ-1               |                                    | 5,83<br>5,98 | 54,2<br>55,3 | 15,3<br>15,6 | 26,9<br>28,0 |
|                      | *-расшифровк                                     |                                                  | D / D M O CT O M - 1 N / 1         | LUV          | . 55.2       | 1 5 6        | 30 N         |

<sup>\*-</sup>расшифровка сокращений представлены в методике полевого опыта

Масса 1000 зерен озимой мягкой пшеницы была большой и составляла у лучшего из сортов -Московская 82 — 57,3 г, что на 9,0 г или 18,6 % больше, чем у контрольного сорта Московская 39. Минеральные удобрения оказали небольшое влияние на показатель массы 1000 зерен озимой пшеницы: при этом выделился фон  $N_{120}P_{60}K_{60}$ , в среднем изучаемый показатель составил величину - 52,2 г., что на 1,2 г или 2,4 % выше контроля без применения минеральных удобрений. При рассмотрении видов внекорневых обработок растений и протравливании семян выявлено, что наибольшая прибавка показателя массы 1000 зерен была получена от внекорневой обработки биопрепаратом Восток ЭМ-1 в период кущения -0,75г или 10,2 % по сравнению с вариантом без применения обработок.

#### Обсуждение

Улучшение ассортимента озимой мягкой пшеницы путем создания многообразия сортов является одним из основных резервов увеличения урожайности и качества зерна сельскохозяйственных культур.

Установлено, что среди сортов озимой пшеницы изучаемых в опыте выделился сорт Московская 82 (выведенный в экологических условиях Нижегородской области и наиболее адаптирован к данным условиям возделывания) со средней урожайностью — 7,01 т/га, что на 1,20 т/га или 20,7 % больше, чем у контрольного сорта Московская 39, что подтверждается данными ФГБУ «Госсорткомиссией» при включении данного сорта в реестр селекционных достижений.

Нашими исследованиями подтверждено, что среди всех изучаемых в опыте факторов отличились минеральные удобрения, фон  $N_{120}P_{60}K_{60}$ , урожайность вариантов которого в среднем на 2,48...11,23 % выше контроля без удобрений. При анализе приемов внекорневых обработок растений и предпосевной инокуляции семян отмечено, что максимальная прибавка урожайности получена на удобренных фонах и от внекорневой обработки препаратом Восток ЭМ-1 (до 15,0 %), что подтверждают научные исследования, проводимые в других регионах страны [9, 14].

Проведенные исследования показывают, что минеральные удобрения оказали наибольшее влияние на оба изучаемых показателя качества озимой пшеницы, прибавка от которых составила 1,5 и 1,6 % по сравнению с естественным фоном без их внесения. Среди изучаемых приемов внекорневых обработок растений и предпосевной инокуляции семян следует выделить внекорневое внесение биопрепарата Восток ЭМ-1 в период кущения, при котором

была получена наибольшая прибавка по содержанию белка и клейковины по сравнению с вариантом без его применения соответственно 0,1...0,3 % и 0,4...0,9 %.

Полученные данные о более эффективном применении биопрепаратов по вегетации сельскохозяйственных культур по минеральному фону подтверждаются многочисленными исследованиями в других регионах России: исследования, проведенные в Самарском ГАУ Васиным В.Г, Фадеевым С.В и Васиным А.В. в 2020-22 гг. свидетельствуют об увеличении продуктивности и качества зерна (содержание белка и клейковины) сортов озимой пшеницы при внесении минеральных удобрений и комплексном применении стимулирующих препаратов. В Ульяновском ГАУ- учеными Куликовой А. Х, Яшиным Е. А. и др. установлено, что применение биопрепаратов совместно с соломой незначительно снижает урожайность зерна озимой пшеницы по сравнению с применением фона минерального питания и увеличивает качественные его показатели (содержание клейковины повышается до 24,8...25,2 %, по сравнению с контрольным вариантом, без внесения минеральных удобрений и биопрепаратов – 24,2 %, при HCP<sub>05</sub>-0,2) [9, 14].

#### Заключение

- 1. Среди сортов озимой мягкой пшеницы, изучаемых в опыте, выделился сорт Московская 82 со средней урожайностью 7,01 т/га, что на 1,20 т/га или 20,7 % больше, чем у контрольного сорта Московская 39.
- 2. Применение фона минеральных удобрений  $N_{120}P_{60}K_{60}$  позволяет повысить урожайность изучаемых сортов озимой пшеницы на 2,48...11,23 % по сравнению с выращиванием их по естественному фону минерального питания (контроль).
- 3. По содержанию белка и сырой клейковины среди сортов озимой мягкой пшеницы выделился сорт Московская 40 со средними значениями изучаемых показателей по годам 17,2 и 31,5 %, что на 2,7 и 7,2 % больше, чем у контрольного сорта Московская 39.
- 4. Масса 1000 зерен была большей и составляла у лучшего из сортов Московская 82 57,3 г., что на 18,6 % больше, чем у контрольного сорта Московская 39.
- 5. При изучении приемов внекорневых обработок растений и предпосевной обработке семян определено, что наибольшая прибавка урожайности получена от внекорневого внесения биопрепарата Восток ЭМ-1 в период кущения, и она составила в среднем по вариантам 10,4...15,0 %.

#### Литература

- 1.Федеральный закон «О зерне и продуктах его переработки» от 05.12.1998№149-ФЗ (с изменениями и дополнениями) [электронный ресурс]. -Режим доступа: http:// base. garant/ ru).
- 2. Жученко А. А. Обеспечение продовольственной безопасности России в XXI веке на основе адаптивной стратегии устойчивого развития АПК (теория и практика). Киров: НИИСХ Северо-Востока, 2009. 274 с.

- 3. Сандухадзе Б. И. Селекция озимой пшеницы в центральном регионе Нечерноземья России. М.: ООО» НИПКЦ Восход-А», 2011. 504 с.
- 4. Посевные площади, валовой сбор и урожайность сельскохозяйственных культур в 2021 г. [Статистический бюллетень по Нижегородской области]. Н. Новгород: Нижегородстат, 2022.
- 5. Петров Л. К., Саков А. П. Влияние приемов технологии возделывания на урожайность и качество зерна сортов озимой пшеницы в Нижегородской области // Международный сельскохозяйственный журнал. 2020. №2(374). Т. 63. С. 81-83.
- 6. Петров Л. К. Особенности формирования потенциальной продуктивности озимой пшеницы в зависимости от сортов, норм и сроков посева семян в Волго-Вятском регионе // Международный сельскохозяйственный журнал, 2021, № 6. (384). С. 30-33.
- 7. Урожайность сортов озимой пшеницы, элементы ее структуры и адаптивные свойства в условиях Нечерноземной зоны / Б. И Сандухадзе, Р. З. Мамедов, М. С Крахмалева и др. // Зерновые и крупяные культуры. 2021. №3 (39). С.17-22.
- 8. Влияние различных схем применения макро- и микроудобрений и стимулирующих препаратов / В. Н. Фомин, А. М. Козин, И. И. Мардиев и др. // Известия Самарской ГСХА. 2022. № 2. С19-29. doi:10.55471/19973225.2022. 7.2.19.
- 9. Формирование урожая сортов озимой пшеницы при внесении удобрений на планируемую урожайность / В. Г. Васин, С. В. Фадеев, А. В. Васин и др. // Известия Самарской ГСХА. 2022. № 2. С.3-9. doi:10.55170/ 1997-3225-2024-9-1-3-9
- 10. Шелахова М. В., Романова И. Н., Терентьев С. Е. Продуктивность сортов зерновых культур в зависимости от фонов минерального питания // Зерновое хозяйство России. 2022. №2. С. 112-118.
- 11. Seolites enhance soil healts crop productivilu and environment sajetu / M. Mondel. B. Bismas. S. Garal, et. al. // Agrjnomu. 2021. Vol. 11 (3). P. 448.
- 12. Zakharova N. N., Zakharov N. A. Source material for briding soft winter wheat in the forest stepple of the Middle Volga region // BTO Web Conferences. 2021. 32. R. 001/89
- 13. Северина В. Я., Глотов А. А. Природное земледелие и эффективные микроорганизмы. Владивосток. ООО «Рея» изд. 9, перераб. и дополн. 2019. 53 с.
- 14. Яшин Е. А., Куликова А. Х., Яшин А. Е. Системы удобрения озимой пшеницы в Среднем Поволжье (органическая, органоминеральная, минеральная). Ульяновск. Ульяновский ГАУ. 2021. 196 с.
- 15. Куликова А. Х., Карпов А. В., Яшин Е. А. Кремнистые породы в системе удобрения сельскохозяйственных культур. Ульяновск. Ульяновский ГАУ. 2020. 176 с.
- 16. Уромова И. П., Козлов А. В. Влияние кремниевых регуляторов роста на продуктивность и качество урожая сельскохозяйственных культур // Естественные и технические науки. 2021. № 12 (163). С.159-163.
- 17. Самсонова Н. Е. Кремний в растительных и животных организмах // Агрохимия. 2020. № 1.С.86-96. doi:10.1134/500021881/ 9010071

## References

- 1. Federal Law "On Grain and Its Processed Products" dated 05.12.1998 No. 149-FZ (with amendments and additions) [electronic resource]. Access mode: http://base.garant/ru).
- 2. Zhuchenko A.A. Ensuring food security of Russia in the 21st century based on the adaptive strategy for sustainable development of the agro-industrial complex (theory and practice). Kirov: Research Institute of Agriculture of the North-East, 2009. 274 p.
- 3. Sandukhadze, B.I. Breeding of winter wheat in the central region of the Non-Black Soil Region of Russia. Moscow: OOO "NIPKTs Voskhod-A", 2011. 504 p.
- 4. Sown areas, gross harvest and yield of agricultural crops in 2021 [Statistical Vestnik for the Nizhny Novgorod Region]. N. Novgorod: Nizhegorodstat, 2022.
- 5. Petrov L. K., Sakov A. P. Influence of cultivation technology techniques on yield and grain quality of winter wheat varieties in Nizhny Novgorod region // International Agricultural Journal. 2020. No. 2 (374). Vol. 63. P. 81-83.
- 6. Petrov L. K. Features of formation of potential productivity of winter wheat depending on varieties, rates and timing of seed sowing in the Volga-Vyatka region // International Agricultural Journal, 2021, No. 6 (384), P. 30-33.
- 7. Yield of winter wheat varieties, elements of its structure and adaptive properties in the conditions of the Non-Black Soil zone / B. I. Sandukhadze, R. Z. Mamedov, M. S. Krakhmaleva, et al. // Grain and cereal crops. 2021. No. 3 (39). P. 17-22.
- 8. The influence of various schemes for application of macro- and microfertilizers and stimulating preparations / V. N. Fomin, A. M. Kozin, I. I. Mardiev, et al. // Vestnik of Samara State Agricultural Academy. 2022. No. 2. P. 19-29. doi: 10.55471/19973225. 2022. 7.2.19.
- 9. Formation of the yield of winter wheat varieties when applying fertilizers for the planned yield / V. G. Vasin, S. V. Fadeev, A. V. Vasin, et al. // Vestnik of Samara State Agricultural Academy. 2022. No. 2. P. 3-9. doi:10.55170/1997-3225-2024-9-1-3-9

#### 4.1.1. Общее земледелие и растениеводство (сельскохозяйственные науки)

- 10. Shelakhova M. V., Romanova I. N., Terentyev S. E. Productivity of grain crop varieties depending on mineral nutrition backgrounds // Grain economy of Russia. 2022. No. 2. P. 112-118.
- 11. Seolites enhance soil healts crop productivity and environment sajetu / M/Mondel. B. Bismas. S. Garal, et. al. // Agrjnomu. 2021. Vol. 11 (3). P. 448.
- 12. Zakharova N. N., Zakharov N. A. Source material for briding soft winter wheat in the forest stepple of the Middle Volga region // BTO Web Conferences. 2021. 32. R. 001/89
- 13. Severina V. Ya., Glotov A. A. Natural farming and effective microorganisms. Vladivostok. OOO "Reya" ed. 9, revised and supplemented. 2019. 53 p.
- 14. Yashin E. A., Kulikova A. Kh., Yashin A. E. Fertilization systems of winter wheat in the Middle Volga region (organic, organomineral, mineral). Ulyanovsk. Ulyanovsk State Agrarian University. 2021.196 p.
- 15. Kulikova A. Kh., Karpov A. V., Yashin E. A. Siliceous rocks in fertilization system of agricultural crops. Ulyanovsk. Ulyanovsk State Agrarian University. 2020.176 p.
- 16. Uromova I. P., Kozlov A. V. Effect of silicon growth regulators on productivity and quality of agricultural crops // Natural and technical sciences. 2021. No. 12 (163). P. 159-163.
- 17. Samsonova N.E. Silicon in plants and animals // Agrochemistry. 2020. No. 1. P.86-96. doi:10.1134/500021881/9010071