

Рис. 2. Разведение 1:10

Выводы

В результате проведенных исследований было установлено, что семена подсолнечника торговых марок «Белочка», «Элита из Белозерья» и «Кулек» значительно обсеменены бактериями семейства *Enterobacteriaceae*. Наличие бактерий рода *Bacillus* в исследуемых объектах — это потенциально опасно! До сих пор дифференциация многих бацилл затруднена и нет данных об их патогенных свойствах и действии на организм человека.

Наличие большого количества контаминирующей семечки микрофлоры различной родовой принадлежности — это тревожный сигнал. Целью наших исследований не было установление видовой принадлежности выделенных микроорганизмов. Но значительное их количество, поступающее в ротовую полость, может проникнуть дальше в организм и вызвать пищевое отравление и лизоцим может не помочь. Поэтому лакомство семечки или потенциальный яд — решайте сами.

Выявление бактерий рода Clostridium из пищевых продуктов методом экспресс диагностики

Романова Н., Чумарина Л., Козловский А., Невматуллина А. – студенты 3 курса специальность «Микробиология»
 Руководители: Феоктистова Н.А., Карамышева Н.Н.
ФГОУ ВПО «Ульяновская государственная сельскохозяйственная академия»

Спорообразующие анаэробы рода *Clostridium* принадлежат к семейству Bacillaceae и насчитывают свыше 150 видов. Патогенные клостридии при наличии благоприятных условий способны вызывать у человека газовую гангрену, столбняк, ботулизм, псевдомембранозный энтероколлит и другие заболевания.

Возбудителем столбняка является столбнячная палочка (С. titani). Возбудителей газовой гангрены по степени патогенности принято делить на 3 группы. 1-я группа включает наиболее патогенные виды, каждый из которых, может вызывать газовую гангрену (Clostridium perfringens, С. novyi, С. septikum); во 2-ю группу, входят клостридии обладающие менее патогенными свойствами (С. histolyticum, С. bifermentans, С. sorogenes, С. fallax), Каждый из них также способен самостоятельно вызывать газовую гангрену, но чаще при этом заболевании они встречаются в ассоциации с другими анаэробами. 3-я группа представлена малопатогеннымит клостридиями, не способными

вызывать развитие газовой гангрены, однако, присоединяясь к возбудителю первой или второй группы, они существенно ухудшают течение болезни. К ним относятся *C. septicum*, *C. butiricum*, *C. sordellii* и некоторые другие.

Clostridium perfringens представляют собой круглые 0,5-1,5х4-10 мкм) Грам + образующие споры круглой или овальной формы в зависимости от видовой принадлежности бактерий споры могут располагаться в средней части (центральной), ближе к одному из концов (субтерминально) и на самом конце микробной клетки (терминально). Диаметр споры превышает поперечник вегетативной клетки, поэтому палочки выглядят раздутыми и напоминают веретено. Абсолютное большинство клостридий подвижны (перитрихи) и не образуют капсул, однако основной возбудитель газовой гангрены С. регfringens неподвижен и обладает хорошо выраженной капсулой, что используется для экспресс диагностики.

Выделение и идентификацию возбудителей анаэробных инфекций производят в три этапа. На первом этапе производят микроскопию нативного материала, биопробу на лабораторных животных и посев на питательные среды. Из поступившего материала готовят несколько мазков на предметных стеклах для последующей окраске по Грамму (для изучения морфологии и гампринадлежности бактерии) по Цилю-Нильсену (для обнаружения спор) по Бурри (для обнаружения капсул). Поступившие для исследования кусочки тканей и органов переводят в жидкую фазу путем растирания их в стерильной фарфоровой ступке с добавлением СКС для получения 10% суспензии. Подготовленные для посева материал, разделяют на две равные части, одну из которых прогревают на водяной бане при 80°C в течении 20 минут, что позволяет избавиться от находящихся в пробе вегетативных клеток бактерий и существенно упрощает выделение спорообразующих анаэробов. Исследования гретого и не гретого материала ведут параллельно

Второй этап. Получение изолированных колоний облигатных анаэробов. На анаэробном кровяном агаре клостридии вырастают в виде шероховатых (реже гладких) крупных, плоских колоний, имеющих зону полного гемолиза и обладающих тенденцией к ползучему росту. Некоторые возбудители (titani, septicum и др.) могут вырастать в виде сплошного нежного налета, состоящего из пучков и переплетающихся нитей. В глубине плотной питательной среды клостридии имеют вид дисков чечевичек, клубочков шерсти и др. при этом многие возбудители вызывают многочисленные разрывы плотной питательной среды за счет интенсивного газообразования. После посева подозрительных колоний в глубину СКС или среды Китта-Тароцци из них готовят мазки, окрашивают по Грамму, отмечают морфологические особенности и проверяют чистоту выделенной культуры. Если колония состоит из морфологически однородных микробов, культура считается чистой и подбежит проверки на аэро толерантность. С этой целью, часть колонии переносят на сектор кровяного агара и инкубируют 24-48 часов при 37°C в аэробных условиях. Облигатные анаэробы не будут давать роста в этих условиях.

Третий этап. Дальнейшая идентификация. Сахаралитические свойства анаэробов проверяют путем посева чистой культуры на среды пестрого ряда.

Таблица 1.

Свойства клостридий

Виды	капсулы	подвижность	лецитиназа	индол	ферментация		
клостридий					лактоза	сахароза	маннит
C. perfringens	+	1	+	1	+	+	+
C. novyi muna A	-	+	+	1	-	-	-
C. septicum	-	+	-	-	+	-	-
C. titani	-	+	-	+	-	-	-

Выводы: методы экспресс диагностики позволяют делать вывод о наличии или отсутствии бактерий рода *Clostridium* за более короткие сроки. Посев пат материала на среду Вильсона-Блера позволяет получить ориентировочно ответ о наличие в исследуемой пробе уже через 4-6 часов после культивирования при температуре 42°C. Об этом свидетельствует почернение питательной среды и появление множественных разрывов агара вследствии интенсивного газообразования.

При посеве содержащего C. perfringens материала в пробирку с лакмусовым молоком через 2-4 часа при температуре культивирования 42^{0} С в среде наступают характерные изменения: образуются кирпично-красный, пронизанный пузырьками газа творожистый сгусток казеина и прозрачная сыворотка.

Влияние СВЧ- облучения на инактивацию кишечной палочки контаминирующей пищевые продукты

Романова Н., Чумарина Л., Козловский А., Невматуллина А. – ст-ты 3 курса специальность «Микробиология»

Руководители: Феоктистова Н.А., Карамышева Н.Н. ФГОУ ВПО «Ульяновская государственная сельскохозяйственная академия»

В наши дни наиболее актуальной является проблема наиболее быстрого и безопасного для человека обеззараживания пищевых продуктов. Кишечная палочка это наиболее часто встречающаяся бактерия, присутствующая в пищевых продуктах в частности в мясных полуфабрикатах и колбасных изделиях.

Исследованиями Телшевского Б.Е., Шашкина Н.Н. 1956г. Было установлено, что обработка мяса в поле токов высокой частоты дает полное уничтожение стафилококкозов и бактерий групп кишечной палочки. Высокое бактерицидное и бактериостатическое воздействие СВЧ нагрева отмечено в ряде работ по использованию этого способа и процессах сублимированной сушки, пастеризации молока, мгновенной стерилизации пищевых жидкостей (Allais R 1965г.). Однако, стерилизационного действия СВЧ- обработки (до готовности) на споровые формы в мясе не установлено.