ПОВЫШЕНИЕ УРОЖАЙНОСТИ КУКУРУЗЫ ПОСРЕДСТВОМ НЕКОРНЕВОЙ ПОДКОРМКИ РАСТЕНИЙ

Шмалько Ирина Анатольевна, кандидат сельскохозяйственных наук, ведущий научный сотрудник

Багринцева Валентина Николаевна, доктор сельскохозяйственных наук, профессор, главный научный сотрудник, и. о. зав. отделом технологии возделывания кукурузы

ФГБНУ «Всероссийский научно-исследовательский институт кукурузы», 357528, Ставропольский край, г. Пятигорск, ул. Ермолова, 14Б тел.89633871651, e-mail: shmalko.i@bk.ru

Ключевые слова: гибриды, урожай, минеральные удобрения, некорневая подкормка

В статье проанализированы экспериментальные данные, полученные в полевых опытах, проводившихся во ВНИИ кукурузы в 2018-2020 гг. в зоне достаточного увлажнения Ставропольского края. Изучали влияние минеральных удобрений N_{30} , N_{30} , P_{30} , вносимых под предпосевную культивацию и на их фоне некорневую подкормку растений агрохимикатом Вуксал Макромикс 2,5 л/га в 7-8 листьев, а также самостоятельной подкормки растений Вуксал Макромикс 2,5 л/га в 7-8 листьев. Объектом исследований были гибриды разных групп спелости: Машук 185 МВ, Машук 220 МВ и Машук 355 МВ. По результатам исследований было установлено положительное влияние удобрений и листовой подкормки растений агрохимикатом Вуксал Макромикс 2,5 л/га в 7-8 листьев на вегетативный прирост, увеличение урожайности зеленой массы и зерна кукурузы. Увеличение высоты растений по вариантам опыта: гибрида Машук 185 MB составило 5-9 см, Машук 220 MB - 8-14 см, Машук 355 МВ - 9-15 см. Прибавки урожая зеленой массы при внесении $N_{_{30}}$ и $N_{_{30}}$ $P_{_{30}}$ $K_{_{30}}$ под предпосевную культивацию по гибридам составили 7,2-22,6 % и 16,8-35,5 %, $N_{_{30}}$ под предпосевную культивацию + Вуксал Макромикс 2,5 л/га в 7-8 листьев –9,5-27,2 %, N30P30K30 под предпосевную культивацию + Вуксал Макромикс 2,5 л/га в 7-8 листьев — 15,0-33,5 %. Применение для некорневой одного удобрения Вуксал Макромикс 2,5 л/га в 7-8 листьев повысило урожай зеленой массы по гибридам на 13,3-22,8 %. Прибавки урожая зерна при внесении N_{30} и $N_{30}P_{30}$ K_{30} предпосевную культивацию по гибридам составили 4,2-8,3 % и 5,0-7,9 %, N_{30} под предпосевную культивацию + Вуксал Макромикс 2,5 л/га в 7-8 листьев — 4,2-7,5 %, $N_{30}P_{30}K_{30}$ под предпосевную культивацию + Вуксал Макромикс 2,5 л/га в 7-8 листьев — 3,0-12,1 %. Применение для некорневой подкормки удобрения Вуксал Макромикс 2,5 л/га в 7-8 листьев как самостоятельного приема повысило урожай зерна по гибридам на 8,0-11,5%.

Введение

Кукуруза — одна из наиболее распространенных зерновых культур. Расширение производства зерна кукурузы будет осуществляться преимущественно не за счет увеличения площадей, а за счет значительного повышения урожайности на основе использования современных агротехнологий [1, 2, 3].

В комплексе агротехнических условий, обеспечивающих получение высокого урожая зерна, большое значение имеют минеральные удобрения. Чтобы получить наибольшую прибавку урожая от применения удобрений, надо не только хорошо знать потребность растения в отдельных элементах питания, но и их влияние на рост, развитие и качество получаемой продукции. Нередко то или иное питательное вещество оказывается в минимуме в тот период, когда растение нуждается в нем больше всего. В силу этих причин применение удобрений дает высокий эффект [4, 5].

Вопрос о правильных приемах применения удобрений является чрезвычайно актуальным. Для построения рациональной систе-

мы использования удобрений имеется много разных возможностей, причем система всегда будет варьировать в зависимости от погодных условий.

Некорневые подкормки растений представляют существенный интерес. Их особенность заключается в том, что питательные вещества, попадая на листья, быстрее включаются в обмен растений, что бывает важно при наблюдающемся страдании растений от их недостатка. При этом способе удобрения не соприкасаются и, следовательно, не поглощаются почвой, а остаются в форме легкодоступных соединений для растений [6, 7].

Отзывчивость кукурузы на азотные удобрения доказана многими исследователями [8, 9]. Высокие урожаи зерна кукурузы дает применение комплексных минеральных удобрений [10, 11, 12]. Некорневые подкормки во время вегетации растений удобрениями, имеющими в своем составе микроэлементы, обеспечивая активацию метаболических процессов и ускорение роста на начальных этапах онтогенеза, в конечном итоге повышают урожайность кукурузы

[13, 14, 15, 16, 17].

С совершенствованием технологий возделывания и появлением новых гибридов кукурузы, имеющих высокий генетический потенциал, все большее предпочтение отдается новым видам удобрений, содержащих в своем составе макро- и микроэлементы, аминокислоты, применяемым для некорневой подкормки растений, способным повышать урожайность кукурузы [18, 19, 20].

Некорневая подкормка растений не может заменить основного внесения минеральных удобрений в почву, хотя в ряде случаев может выступать как единственно возможный источник питания растений.

Целью исследования является изучение влияния некорневой подкормки растений удобрением Вуксал Макромикс на урожайность гибридов кукурузы в сочетании с фоном азотного и комплексного минеральных удобрений и без них.

Материалы и методы исследований

Эксперименты проводили с 2018 по 2020 гг. на опытном поле Всероссийского НИИ кукурузы, расположенном в зоне достаточного увлажнения Ставропольского края.

Почва опытного участка — чернозем обыкновенный карбонатный малогумусный мощный тяжелосуглинистый. Объемная масса метрового слоя почвы в среднем составляет 1,25 г/см³. Реакция почвенного раствора гумусового горизонта щелочная (рН 7,5). Гумуса в слое почвы 0-20 см содержится около 4,7 %.

В среднем за 2018-2020 гг. осадков выпало за май-сентябрь 290 мм, среднесуточная температура воздуха составила 19,7°С, ГТК 0,96. Из трех лет исследований 2019 г. был более благоприятным, 2018 г.- менее благоприятным, 2020 г. был самым неблагоприятным и засушливым для формирования высокого урожая зерна.

Исследования проводили на районированных гибридах селекции ВНИИ кукурузы: раннеспелом Машук 185 МВ (ФАО 185), среднераннем Машук 220 МВ (ФАО 220), среднеспелом Машук 355 МВ (ФАО 350).

Схема опыта:1. Контроль без удобрений, $2.N_{30}$ (аммиачная селитра) под предпосевную культивацию, $3.N_{30}$ (аммиачная селитра) под предпосевную культивацию + некорневая подкормка Вуксал Макромикс 2,5 л/га в 7-8 листьев, $4.\ N_{30}P_{30}K_{30}$ (нитроаммофоска) под предпосевную культивацию, $5.\ N_{30}P_{30}K_{30}$ (нитроаммофоска) под предпосевную культивацию + некорневая подкормка Вуксал Макромикс 2,5 л/га в 7-8 ли-

стьев, 6. Некорневая подкормка Вуксал Макромикс 2,5 л/га в 7-8 листьев.

Агрохимикат Вуксал Макромикс — минеральное удобрение для некорневой подкормки кукурузы, имеющее в своем составе макроэлементы (N - 241 г/л, P_2O_5- 241 г/л, K_2O- 181 г/л) и микроэлементы (B - 0,3 г/л, Cu-0,76 г/л, Fe - 1,51 г/л, Mn-0,76 г/л, Mo-0,015 г/л, Zn-0,76 г/л).

Общая площадь делянки равна 19,6 м², учетная-9,8 м². Размещение делянок систематическое, в четырехкратной повторности.

Предшественник кукурузы — озимая пшеница. Основная обработка почвы — вспашка. Весной до посева кукурузы проведено две культивации. Под первую весеннюю культивацию вносили удобрения в виде аммиачной селитры в дозе N30 и нитроаммофоски в дозе в $N_{30}P_{30}K_{30}$. Для борьбы с сорными растениями вносили гербицид Аденго в дозе 0,5 л/га. Междурядную культивацию проводили в фазе у кукурузы 8 листьев.

Сеяли кукурузу 28-30 апреля сеялкой СУПН-8. Некорневую подкормку минеральным удобрением Вуксал Макромикс 2,5 л/га проводили в фазе 7-8 листьев с помощью опрыскивателя ОП-2000 при расходе рабочего раствора 250 л/га.

Содержание азота, фосфора и калия в слое почвы 0...20 см определяли в фазе пяти листьев. В среднем на контроле без удобрений содержание нитратного азота (ГОСТ 26951-86) составляло 17,5 мг/кг, подвижного фосфора (ГОСТ 26205-91) 12 мг/кг, обменного калия (ГОСТ 26205-91) 272мг/кг, в варианте внесения N_{30} под предпосевную культивацию соответственно 24,4; 13,4; 296 мг/кг, в варианте внесения $N_{30}P_{30}K_{30}$ под предпосевную культивацию 29,4; 19,3; 310 мг/кг.

Результаты исследований

В результате проведенных исследований некорневая подкормка удобрением Вуксал Макромикс в 7-8 листьев, улучшая питание, стимулировала вегетативный рост растений в высоту всех изучаемых гибридов (табл. 1).

Сравнивая высоту растений, по вариантам опыта можно отметить, что более сильный прирост растений в высоту наблюдался при внесении удобрения Вуксал Макромикс 2,5 л/га в 7-8 листьев по фону нитроаммофоски N30P30K30 под культивацию. В этом варианте прирост растений относительно варианта без применения удобрений был больше, чем в других вариантах. Высота гибрида Машук 185 МВ увеличилась на 9 см, Машук 220 МВ — на 14 см, Машук 355 МВ

Таблица 1 Влияние удобрений на высоту растений (в фазе цветения), см (в среднем 2018-2020 гг.)

Вариант	Машун	₹ 185 MB	Машун	« 220 MB	Машук 355 МВ		
вариант	высота	прирост	высота	прирост	высота	прирост	
Контроль без удобрений	211	-	199	-	217	-	
N ₃₀ под культивацию	206	5	207	8	226	9	
N ₃₀ под культивацию + Вуксал Макромикс 2,5 л/га в 7-8 листьев	217	6	209	10	229	12	
$N_{_{30}}P_{_{30}}K_{_{30}}$ под культивацию	218	7	210	11	229	12	
$N_{30}P_{30}K_{30}$ под культивацию + Вуксал Макромикс 2,5 л/га в 7-8 листьев	220	9	213	14	232	15	
Вуксал Макромикс 2,5 л/га в 7-8 листьев	218	7	209	10	231	14	
HCP _{0,05} , cm	5			7	6		

Таблица 2 Влияние удобрений на урожай зеленой массы (в фазе молочно-восковой спелости зерна), т/га (в среднем за 2018-2020 гг.)

Вариант	Машук 185 МВ			Ma	шук 220	MB	Машук 355 МВ			
	зеле- ная		авка	зеле- ная	прибавка		зеле- ная	прибавка		
	масса	т/га	%	масса	т/га	%	масса	т/га	%	
Контроль без удобрений	32,06		-	27,11	-		33,47	-	-	
N³0 под культивацию	34,74	2,68	8,4	33,25	6,14	22,6	35,87	2,40	7,2	
$N_{_{30}}$ под культивацию + Вуксал Макромикс 2,5 л/га в 7-8 листьев	36,12	4,06	12,7	34,49	7,38	27,2	36,65	3,18	9,5	
$N_{30}P_{30}K_{30}$ под культивацию	38,91	6,85	21,4	36,73	9,62	35,5	39,08	5,61	16,8	
$N_{_{30}}P_{_{30}}K_{_{30}}$ под культивацию + Вуксал Макромикс 2,5 л/га в 7-8 листьев	40,02	7,96	24,8	36,19	9,08	33,5	38,49	5,02	15,0	
Вуксал Макромикс 2,5 л/га в 7-8 листьев	36,56	4,50	14,0	33,30	6,19	22,8	37,91	4,44	13,3	
HCP _{0,05,} т/га		3,20			5,65			3,68		

на – 15 см.

Стоит отметить, что процент прироста растений гибридов по фону одной нитроаммофоски N30P30K30, внесенной под предпосевную культивацию, составил по гибридам 4,3-6,9 %, что было выше, чем по фону аммиачной селитры $N_{\rm 30}-2$,8-5,5 %.

Процент прироста растений от внесения в некорневую подкормку одного удобрения Вуксал Макромикс в 7-8 листьев составил по гибридам 3,3-6,5 %, что было почти одинаковым с внесением под культивацию нитроаммофоски $N_{30}P_{30}K_{30}$ без некорневой подкормки удобрением Вуксал Макромикс.

В полученных результатах отчетливо выявилось значительное влияние минеральных удобрений N_{30} , $N_{30}P_{30}K_{30}$, внесенных под культивацию, и некорневой подкормки удобрением Вуксал Макромикс в 7-8 листьев на урожай зеленой массы гибридов (табл. 2).

Наиболее интенсивно зеленая масса растений гибрида Машук 185 MB нарастала на

делянках с внесением полного минерального удобрения N30P30K30 с некорневой подкормкой удобрением Вуксал Макромикс в 7-8 листьев, гибрида Машук 220 МВ и Машук 355 МВ при внесении под предпосевную культивацию $N_{30}P_{30}K_{30}$ без некорневой подкормки удобрением Вуксал Макромикс. В результате прибавка урожая зеленой массы гибрида Машук 185 МВ составила 7,96 т/га (24,8 %), Машук 220 МВ – 9,62 т/га (35,5 %), Машук 355 МВ – 5,61 т/га (16,8 %) по отношению к контролю без удобрений.

Исследованиями не установлено значительного влияния некорневой подкормки растений удобрением Вуксал Макромикс, внесенного на фоне аммиачной селитры в дозе N_{30} и нитроаммофоски $N_{30}P_{30}K_{30}$. Урожай зеленой массы при внесении Вуксал Макромикс в 7-8 листьев на фоне $N_{30}P_{30}K_{30}$ зеленая масса незначительно повышалась только у гибрида Машук 185 МВ на 3,4 %, на гибридах Машук 220 МВ и Машук 355 МВ наблюдалось почти одинаковое ее сниже-

Влияние удобрений на урожай зерна гибридов, т/га (в среднем за 2018-2020 гг.)

		Машук 185 МВ			Машук 220 MB			Машук 355 МВ		
Вариант	зерно	прибавка		зерно	прибавка		зерно	прибавка		
		т/га	%		т/га	%	00 000	т/га	%	
Контроль без удобрений	5,97	-	-	5,44	-	-	6,00	-	-	
N ₃₀ под культивацию	6,48	0,51	8,5	5,67	0,23	4,2	6,50	0,50	8,3	
$N_{_{30}}$ под культивацию + Вуксал Макромикс 2,5 л/га в 7-8 листьев	6,42	0,45	7,5	5,67	0,23	4,2	6,42	0,42	7,0	
$N_{_{30}}P_{_{30}}K_{_{30}}$ под культивацию	6,27	0,30	5,0	5,87	0,43	7,9	6,44	0,44	7,3	
$N_{_{30}}P_{_{30}}K_{_{30}}$ под культивацию + Вуксал Макромикс 2,5 л/ га в 7-8 листьев	6,69	0,72	12,1	5,87	0,43	7,9	6,18	0,18	3,0	
Вуксал Макромикс 2,5 л/га в 7-8 листьев	6,45	0,48	8,0	6,04	0,60	11,0	6,69	0,69	11,5	
HСР _{0,05,} т/га	0,33		0,29			0,36				

ние на 1,8 и 2,0 %.

Листовая подкормка растений, применяемая как самостоятельный прием удобрением Вуксал Макромикс в 7-8 листьев, повысила урожай зеленой массы гибрида Машук 185 МВ на 4,50 т/га (14,0%), Машук 220 МВ на -6,19 т/га (22,8%), Машук 355 МВ на -4,44 т/га (13,3%).

Внесение удобрений приводило к повышению урожая зерна гибридов (табл. 3).

По вариантам опыта урожай зерна гибрида Машук 185 МВ повысился относительно контроля без удобрений на 5-12,1 %, Машук 220 МВ — на 4,2-11,0 %, Машук 355 МВ — на 3,0-11,5 %.

Приведенные данные показывают, что подкормка растений гибридов Машук 220 МВ и Машук 355 МВ удобрением Вуксал Макромикс в 7-8 листьев по влиянию на урожай зерна имела преимущество перед остальными вариантами. Гибрид Машук 220 МВ от внесения одного удобрения Вуксал Макромикс дал прибавку урожая зерна 0,6 т/га (11%), Машук 355 МВ — 0,69 т/га (11,5 %). Прибавка урожая зерна гибрида Машук 185 МВ в этом варианте оказалась ниже, чем у гибридов Машук 220 МВ и Машук 355 МВ, которая составила 0,48 т/га (8 %).

Сравнивая результаты по внесению селитры N30 и нитроаммофоски $N_{30}P_{30}K_{30}$ под культивацию и дополнительно к ним внесения удобрения Вуксал Макромикс в 7-8 листьев, видно разное их влияние на урожай зерна гибридов. При внесении на фоне аммиачной селитры N30 удобрения Вуксал Макромикс в 7-8 листьев у всех изучаемых гибридов не наблюдалось увеличения урожая зерна. По фону нитроаммофоски $N_{30}P_{30}K_{30}$ дополнительное внесение удобрения Вуксал Макромикс в 7-8 листьев повысило урожай зерна, только гибрида Машук 185 МВ

прибавка составила 0,42 т/га (6,7 %).

Обсуждение

Выявлено, что наибольший прирост растений гибридов Машук 185 МВ на 9 см, Машук 220 МВ — на 14 см и Машук 355 МВ — на 15 см получен в варианте внесения $N_{30}P_{30}K_{30}$ под предпосевную культивацию + Вуксал Макромикс 2,5 л/га в 7-8 листьев.

Максимальная прибавка урожая зеленой массы гибрида Машук 185 МВ 7,96 т/га (24,8 %) получена в варианте некорневой подкормки удобрением Вуксал Макромикс 2,5 л/га в 7-8 листьев на фоне внесения под предпосевную культивацию нитроаммофоски в дозе $N_{30}P_{30}K_{30}$, гибридов Машук 220 МВ — 9,62 т/га (35,5 %) и Машук 355 МВ — 5,61 т/га (16,8 %) в варианте внесения под предпосевную культивацию нитроаммофоски в дозе $N_{30}P_{30}K_{30}$.

Максимальная прибавка урожая зерна гибрида Машук 185 МВ 0,72 т/га (12,1%) получена в варианте применения нитроаммофоски $N_{30}P_{30}K_{30}$ под предпосевную культивацию + Вуксал Макромикс 2,5 л/га в 7-8 листьев, гибридов Машук 220 МВ — 0,60 т/га (11,0%) и Машук 355 МВ — 0,69 т/га (11,5 %) при внесении в 7-8 листьев удобрения Вуксал Макромикс в дозе 2,5 л/га.

Заключение

В результате проведенных исследований на почвах Ставропольского края подтверждается эффективность применения некорневой подкормки растений гибридов Машук 185 МВ, Машук 220 МВ и Машук 335 МВ удобрением Вуксал Макромикс 2,5 л/га в 7-8 листьев как самостоятельный агроприем, что позволяет получить высокие прибавки урожая зеленой массы (13,3-22,8 %) и зерна кукурузы (8,0-11,5 %).

Библиографический список

- 1. Сотченко, В. С. Перспективы производства зерна и семян кукурузы в Российской Федерации на период до 2020 г. / В. С. Сотченко // Кукуруза и сорго. 2010. \mathbb{N} 4. С. 3-9.
- 2. Кукуруза. Выращивание, уборка, консервирование и использование / Д. Шпар, К. Гинапп, Д. Дрегер, А. Захаренко, С. Каленская [и др.]; под общей редакцией Д. Шпара. Москва: ООО ДЛВ АГРОДЕЛО, 2014. 390 с.
- 3. Кукуруза. Агротехнические основы возделывания кукурузы на черноземах Западного Предкавказья / Т. Р. Толорая, Н. Ф. Лавренчук, М. В. Чумак, В. П. Малаканова. Краснодар, 2003. 310 с.
- 4. Володарский, Н. И. Биологические основы возделывания кукурузы / Н. И. Володарский. Москва: Колос, 1975. 256 с.
- 5.Анспок, П. И. Микроудобрения : справочник / П. И. Анспок. 2-е изд., перераб. и доп. Ленинград : Агропромиздат, 1990. 271 с. ISBN 5-10-001085-1.
- 6. Афендулов, К. П. Минеральное питание и удобрение кукурузы / К. П. Афендулов. Киев: Урожай, 1966. 259 с.
- 7. Журбицкий, 3. И. Физиологические и агрохимические основы применения удобрений / 3. И. Журбицкий. Москва : Академия наук СССР, 1963. 294 с.
- 8. Багринцева, В. Н. Отзывчивость на азотное удобрение современных гибридов кукурузы в условиях Ставропольского края / В. Н. Багринцева, И. Н. Ивашененко // Агрохимия. 2015. \mathbb{N} 11. С. 45-50.
- 9.Багринцева, В. Н. Отзывчивость гибридов кукурузы и их родительских форм на азотное удобрение / В. Н. Багринцева, И. Н. Ивашененко // Российская сельскохозяйственная наука. 2017. № 4. С. 17-21.
- 10.Багринцева, В. Н. Эффективность внесения минеральных удобрений под кукурузу / В. Н. Багринцева, Г. Н. Сухоярская, И. А. Шмалько // Развитие агропромышленного комплекса: перспективы, проблемы и пути решения: материалы Международной научно-практической конференции, посвященной 50-летию г. Астрахань (4 11 августа 2008г.). Астрахань, 2008. С. 22 23.
- 11. Моисеев, А. А. Влияние удобрений на содержание основных элементов питания в

- зерне кукурузы, на черноземе выщелоченном в условиях Лесостепи Среднего Поволжья / А. А. Моисеев, А. В. Ивойлов // Аграрный вестник Верхневолжья. 2019. № 4(29). С. 16-25.
- 12. Чекмарев, П. А. Влияние сорта и удобрений на урожайность кукурузы при возделывании на зерно / П. А. Чекмарев, В. Н. Фомин, С. Л. Турнин // Достижения науки и техники АПК. 2017. \mathbb{N} 9. С. 22-24.
- 13.Мамсиров, Н. И. Кукуруза в севооборотах короткой ротации и рациональное применение удобрений при ее монокультуре / Н. И. Мамсиров, Р. К. Тугуз, М. Р. Тимов // Земледелие. 2014. № 1. С. 35-37.
- 14. Шмалько, И. А. Эффективные удобрения и регу-ляторы роста для кукурузы / И. А. Шмалько, В. Н. Багринцева // Кукуруза и сорго. 2016. № 2. С. 17-20.
- 15.Васин, В. Г. Урожайность и кормовые достоинства гибридов кукурузы при внесении минеральных удобрений и стимуляторов роста / В. Г. Васин, И. К. Кошелева // Вестник Ульяновской государственной сельскохозяйственной академии. 2018.— № 2(42). С. 45-53.
- 16.Бендер, Р. Р. Динамика поглощения элементов питания современными гибридами кукурузы / Р. Р. Бендер, Дж. В. Хаегеле, М. Л. Руффо, Ф. Е. Белоу // Вестник питания растений. 2014. № 1. С. 8-13.
- 17.Багринцева, В. Н. Удобрения марки Вуксал для некорневой подкормки кукурузы / В. Н. Багринцева, И. Н. Ивашененко, И. А. Шмалько // Кукуруза и сорго. 2020. № 1. С. 11-16.
- 18. Семина, С. А. Влияние препаратов с микроэлементами на морфобиометрические показатели и урожайность кукурузы / С. А. Семина, И. В. Гаврюшина // Агрохимический вестник. 2017. № 6. С. 43-46.
- 19. Лабынцев, А. В. Влияние магниевого удобрения Агромаг на урожайность озимой пшеницы, кукурузы и подсолнечника / А. В. Лабынцев, С. В. Пасько, В. И. Медведева // Известия Оренбургского государственного аграрного университета. 2013. № 5(43). С. 46-49.
- 20. Крамарев, С. М. Некорневая подкормка кукурузы в условиях северной части степной зоны Украины / С. М. Крамарев, В. Е. Коваленко, Л. Н. Скрипник, В. Н. Шевченко, В. Н. Бондарь, Т. Ф. Яковишина // Агрохимия. — 1999. — № 1. — С. 45-53.

INCREASE OF CORN YIELD BY MEANS OF LEAF FERTILIZING

Shmalko I.A., Bagrintseva V.N. FSBSI "All-Russian Research Institute of Corn", 357528, Stavropol Territory, Pyatigorsk t., Ermolova st., 14B tel. 89633871651, e-mail: shmalko.i@bk.ru

Key words: hybrids, harvest, mineral fertilizers, leaf feeding

The article analyzes the experimental data obtained in field experiments carried out at All-Russian Research Institute of Corn in 2018-2020 in the zone of sufficient moisture in Stavropol Territory. We studied the effect of mineral fertilizers N30, N30P30K30 applied for pre-sowing cultivation and their combination with leaf feeding of plants with the agrochemical product Vuksal Macromix at a dose of 2.5 I / ha at the phase of 7-8 leaves, as well as sole feeding of plants with Vuksal Macromix at a dose of 2.5 I / ha at the phase of 7-8 leaves. The object of the research was hybrids of different ripeness groups: Mashuk 185 MB, Mashuk 220 MB and Mashuk 355 MB. According to the research results, a positive effect of fertilizers and leaf feeding of plants with Vuksal Macromix agrochemical product at a dose of 2.5 I / ha at the phase of 7-8 leaves on vegetative growth, yield increase of green mass and corn grain was established. The increase of plant height according to the variants of the experiment: hybrid Mashuk 185 MV was 5-9 cm, Mashuk 220 MV - 8-14 cm, Mashuk 355 MV - 9-15 cm. The increase of green mass yield when N30 and N30P30K30 were applied for pre-sowing cultivation was 7.2-22.6% and 16.8-35.5%, N30 for pre-sowing cultivation + Vuksal Macromix at a dose of 2.5 I / ha at the phase of 7-8 leaves - 9.5-27.2%, N30P30K30 for pre-sowing cultivation + Vuksal Macromix at a dose of 2.5 I / ha at the phase of 7-8 leaves of grain yield when applying N30 and N30P30K30 for pre-sowing cultivation amounted to 4.2-8.3% and 5.0-7.9%, N30 for pre-sowing cultivation + Vuksal Macromix at a dose of 2.5 I / ha at the phase of 7-8 leaves - 4.2-7.5%, N30P30K30 for pre-sowing cultivation + Vuksal Macromix at a dose of 2.5 I / ha at the phase of 7-8 leaves - 4.2-7.5%, N30P30K30 for pre-sowing cultivation amounted to 4.2-8.3% and 5.0-7.9%, N30 for pre-sowing cultivation + Vuksal Macromix at a dose of 2.5 I / ha at the phase of 7-8 leaves - 4.2-7.5%, N30P30K30 for pre-sowing cultivation at a dose of 2.5 I / ha at the phase of 7-8 lea

Bibliography:

- 1. Sotchenko, V. S. Prospects for production of corn grain and seeds in the Russian Federation for the period up to 2020 / V. S. Sotchenko // Corn and sorghum. 2010. № 4. P. 3-9.
- 2. Corn. Cultivation, harvesting, conservation and use / D. Shpar, K. Ginapp, D. Draeger, A. Zakharenko, S. Kalenskaya [and others]; under the general editorship of D. Shpar. Moscow: OOO DLV AGRODELO, 2014.- 390 p.
- 3. Corn. Agrotechnical foundations of corn cultivation on the black soil of the Western Pre-Caucasian region / T. R. Toloraya, N. F. Lavrenchuk, M. V. Chumak, V. P. Malakanova. Krasnodar, 2003.- 310 p.
 - 4. Volodarsky, N.I. Biological bases of corn cultivation / N.I. Volodarsky. Moscow: Kolos, 1975.- 256 p.
 - 5.Anspock, P.I. Microfertilizers: a reference book / P.I. Anspok. 2nd ed., Rev. and add. Leningrad: Agropromizdat, 1990.- 271 p. ISBN 5-10-001085-1.
 - 6. Afendulov, K.P. Mineral nutrition and fertilization of corn / K.P. Afendulov. Kiev: Urozhai, 1966.- 259 p.
 - 7. Zhurbitsky, Z.I. Physiological and agrochemical bases of fertilization / Z.I. Zhurbitsky. Moscow: Academy of Sciences of the USSR, 1963.- 294 p.
- 8. Bagrintseva, V.N. Responsiveness to nitrogen fertilization of modern corn hybrids in the Stavropol Territory / V.N. Bagrintseva, I.N. Ivashenenko // Agrochemistry. 2015. № 11. P. 45-50.
- 9. Bagrintseva, V. N. Responsiveness of corn hybrids and their parental forms to nitrogen fertilization / V. N. Bagrintseva, I. N. Ivashenenko // Russian agricultural science. 2017. № 4. P. 17-21.
- 10. Bagrintseva, V.N. Efficiency of application of mineral fertilizers for corn / V.N. Bagrintseva, G.N.Sukhoyarskaya, I.A. Shmalko // Development of the agro-industrial complex: prospects, problems and solutions: materials of the International Scientific and Practical Conference, dedicated to the 50th anniversary of the city of Astrakhan (4-11 August 2008). Astrakhan, 2008.- P. 22 23.
- 11. Moiseev, A. A. Influence of fertilizers on the content of basic nutrients in corn grain on leached black soil in the forest-steppe conditions of the Middle Volga region / A. A. Moiseev, A. V. Ivoilov // Agrarian Vestnik of the Upper Volga Region. 2019. № 4 (29). Р. 16-25.
- 12. Chekmarev, P.A. Influence of variety and fertilizers on corn yield in case of cultivation for grain / P.A. Chekmarev, V.N. Fomin, S.L. Turnin // Achievements of science and technology of the agro-industrial complex. 2017. № 9. P. 22-24.
- 13. Mamsirov, N. I. Corn in short crop rotations and rational application of fertilizers in its monoculture / N. I. Mamsirov, R. K. Tuguz, M. R. Timov // Agriculture. 2014. № 1. P. 35-37.
 - 14. Shmalko, I.A. Effective fertilizers and growth regulators for corn / I.A. Shmalko, V.N. Bagrintseva // Corn and sorghum. 2016. № 2. P. 17-20.
- 15. Vasin, V. G. Productivity and feed advantages of corn hybrids when applying mineral fertilizers and growth stimulators / V. G. Vasin, I. K. Kosheleva // Vestnik of Ulyanovsk State Agricultural Academy. 2018.− № 2 (42). P. 45-53.
- 16 Bender, R.R. Dynamics of absorption of nutrients by modern corn hybrids / R.R. Bender, J.V. Haegele, M.L. Ruffo, F.E. Belou // Vestnik of plant nutrition. 2014. № 1. P. 8-13.
- 17 Bagrintseva, V. N. Fertilizers of Vuksal brand for corn leaf feeding / V. N. Bagrintseva, I. N. Ivashenenko, I. A. Shmalko // Corn and sorghum. 2020. № 1. P. 11-16.
- 18. Semina, S.A. Influence of preparations with microelements on morphobiometric parameters and corn yield / S.A. Semina, I.V. Gavryushina // Agrochemical Vestnik. 2017. № 6. P. 43-46.
- 19. Labyntsev, A. V. Influence of magnesium fertilizer Agromag on yield of winter wheat, corn and sunflower / A. V. Labyntsev, S. V. Pasko, V. I. Medvedeva // Vestnik of Orenburg State Agrarian University. 2013. № 5 (43). Р. 46-49.
- 20. Kramarev, S. M. Leaf feeding of corn in the northern part of the steppe zone of Ukraine / S. M. Kramarev, V. E. Kovalenko, L. N. Skripnik, V. N. Shevchenko, V. N. Bondar, T F. Yakovishina // Agrochemistry. 1999. № 1. P. 45-53.