тельно, в этом возрасте более крупными, с лучшими мясными формами являются цигайские помесные и куйбышевские ягнята.

УДК 639.311

ПРИМЕНЕНИЕ КРЕМНЕЗЕМИСТОГО МЕРГЕЛЯ СИУЧ-ЮШАНСКОГО МЕСТОРОЖДЕНИЯ И ЕГО ВЛИЯНИЕ НА РОСТ И ОБМЕННЫЕ ПРОЦЕССЫ МОЛОДИ КАРПА Д.М.Цепленко, Н.А.Любин, д.б.н., профессор, Г.Н.Гусаров, к.вет.н., профессор

Природные цеолиты находят все более широкое применение в различных отраслях промышленности, сельского хозяйства, в частности в рыбоводстве. Они обладают уникальными физико-химическими свойствами, обуславливающих их биологическую активность по отношению к живым организмам. Цеолиты представляют собой перспективный объект для успешного их включения в существующие технологические звенья с целью повышения продуктивности.

В Ульяновской области открыто Сиуч-Юшанское месторождение цеолитсодержащей породы осадочного типа. Однако его воздействие на физиологический статус рыб не изучено. Поэтому мы провели испытание его в выростных прудах рыбхоза «Большие Ключищи». Дробленый мергель вносили по сухому ложу пруда в количестве 6 т/га.

Результаты работы показали (табл. 1), что применение кремнеземистого мергеля повысило на 248 кг/га рыбопродуктивность выростного пруда, увеличилась средняя штучная масса сеголеток карпа до 28г (по сравнению с 22г в контроле), повысился выход сеголеток с 64% (в контроле) до 68% (в опыте).

1. Показатели	рыбопродуктивности	прудов
---------------	--------------------	--------

Показатели	Контроль	Опыт
Площадь пруда, га	7	4
Внесено мергеля, т		24
Внесено мергеля, т/га		6
Посажено личинок, тыс. шт	350	200
Посажено личинок, тыс. шт/га	50	50
Средняя навеска личинок, мг	58	58
Отловлено сеголеток, тыс. шт	224	136
Отловлено сеголеток, тыс. шт/га	32	34
Средняя навеска сеголеток, г	22	28
Масса отловленной рыбы, кг	4928	3808
Рыбопродуктивность, кг/га	704	952
Выход, %	64	68

Одной из причин разницы в значениях рыбопродуктивности между опытным и контрольным прудами является улучшение гидрохимического режима водоема, повышение содержание кислорода в воде.

Это способствовало болес высокому уровню развития естественной кормовой базы опытных прудов. Средняя биомасса зоопланктона опытных прудов достигала 39,50г/м³ по сравнению с 34,34г/м³ в контрольном.

Особо следует подчеркнуть благоприятное воздействие мергеля на химические показатели воды прудов (табл. 2). Результаты исследований показывают, что в воде опытного пруда значительно ниже концентрация ионов аммония, нитритов и нитратов.

2. Химический анализ воды

Показатели	Контроль	Опыт
рН	7,64	7,77
NH ₃ , мкг/дм ³	1671	612
Нитраты, мг/дм ³	3,22	2,15
Нитриты, мг/дм ³	0,094	0,017
Фосфаты, мг/дм3	0,3	0,3

Результаты исследований показывают, что в крови рыб, содержащихся в пруду с добавлением кремнеземистого мергеля, повышается уровень содержания общего белка, альбуминов и глобулиновых фракций, при этом снижается содержание сухого вещества и количество эритроцитов (табл. 3)

3. Анализ крови рыб

Показатель	Контроль	Опыт	Показатель	Контроль	Олыт	Показатель	Контроль	Опыт
Общий белок, %	2,58	3,27	Глобули- ны альфа, %	0,44	0,56	Эритроци- ты 10×12/л	1,49	1,21
Альбуми- ны, %	0,35	0,55	Глобули- ны бета, %	1,56	1,86	Лейкоци- ты, 10×9/л	65	64
Показа- тель гема- токрита	29	33	Глобули- ны гамма, %	0,18	0,26	Гемогло- бин, %	3,7	5,4

Снижение содержания ионов аммония в воде повышает содержание кислорода в крови рыб, увеличивается интенсивность их роста, уровень

обменных процессов.

Повышается содержание белка в мышцах рыб по сравнению с контролем. Уровень незаменимых и заменимых аминокислот в мышцах рыб опытного пруда выше, чем контрольного (табл. 4).

4. Содержание аминокислот в мышцах рыб, г/кг

Амино- кислота	Кон- троль	Опыт	Амино- кислота		Опыт	Амино- кислота	Кон- троль	Опыт
лизин	9,47	11,14	глут.к.	17,74	20,41	метионин	3,03	3,63
гистидин	4,06	4,69	пролин	4,8	5,69	изолейцин	5,87	6,63
аргинин	7,64	9,02	глицин	7,87	8,88	лейцин	9,74	11,38
аспар.к.	12,81	15,1	аланин	8,76	10,1	тирозин	3,79	4,49
треонин	4,63	5,7	цистин	1,19	1,37	фенилалан.	4,53	5,49
серин	5,73	6,56	валин	5,57	6,5			

Мергель увеличивает содержания витаминов Д, Е и группы В (табл.5).

5. Содержание витаминов в мышцах рыб, мг/кг.

Витамины	Контроль	Опыт
Д	0,086	0,102
E	10,65	12,175
B ₁	0,705	0,813
B_2	4,425	5,1
B_3	11,725	13,225
B ₄	2775	2920
B ₅	61,75	67,5
B ₆	13,325	15,75
B ₁₂	217,5	237,5

Исследования минерального обмена свидетельствуют о положительном влиянии кремнеземистого мергеля при его использовании в технологическом цикле рыбоводства. Повышается содержание макроимикроэлементов в мышцах рыб (табл. 6).

6. Содержание минеральных веществ в мышцах

	Кальций	Фосфор	Магний	Калий	Натрий	Хлор	Cepa
	%	%	%	%	%	%	%
Опыт	0,82	0,59	0,073	0,26	0,41	0,52	0,14
Контроль	0,73	0,51	0,059	0,22	0,35	0,45	0,12

	Железо, мг/кг	Медь, мг/кг	Цинк, мг/кг	Марганец, мг/кг	Кобальт, мг/кг	Йод, мг/кг
Опыт	26,3	1,69	22,9	2,8	0,032	0,27
Контроль	20,5	1,44	19,75	2,5	0,021	0,16

Таким образом, использование кремнеземистого мергеля по дну пруда перед наполнением водой способствует созданию благоприятных условий для выращивания рыбы, очень чувствительной к изменениям среды, повышению естественной кормовой базы, улучшению обменных процессов рыб и в итоге повышению рыбопродуктивности.

УДК 636.082.12; 636.082.25

ИСПОЛЬЗОВАНИЕ ГОЛШТИНСКОЙ ПОРОДЫ В СЕЛЕКЦИИ БЕСТУЖЕВСКОГО СКОТА

П.С. Катмаков, д.с.-х.н., В.П. Гавриленко, к. с.-х. н., И.Г. Козлова, Н.П. Катмакова, Кузьмина Н.М.

В нашей стране селекционная программа качественного совершенствования отечественных пород молочного скота предполагает широкое использование голштинских быков-производителей. Скрещивание является одним из важнейших методов улучшения пород и стад и применяется для быстрого усиления или исправления некоторых хозяйственнополезных признаков породы при сохранении её основных качеств.

Многие ученые подчеркивают, что ввод в генофонд улучшаемой породы «чужих» генов не должен коренным образом изменить тип и ценные свойства основной породы (И. Иоганссон, 1963; Н.А. Кравченко, 1973), а для закрепления вновь приобретенных качеств необходимо переходить к разведению помесей «в себе».

Бестужевская порода в зоне Поволжья совершенствуется голштинской с 80-х годов. Цель, которая ставится при этом — создать на данной породной основе новый высокопродуктивный тип скота, сочетающий в себе достоинства исходных пород, а именно: специфические адаптивные свойства к суровым природно-климатическим условиям, крепкую конституцию, высокие откормочные и мясные качества, лучшую способность трансформировать энергию объемистых кормов в продукцию бестужевской и высокую молочную продуктивность, технологические свойства вымени голштинской.

В целях исключения из племенной работы при прилитии бестужевскому скоту «доли крови» голштинской породы стихийных (автоматических) инбридингов параллельно ведется целенаправленна работа по созданию 6 комплексных (синтетических) линий из представителей исходных пород и репродукторов по выращиванию ремонтных бычков выводимых линий. Комплектование племпредприятий быками данных линий