ФИЗИЧЕСКИЕ СВОЙСТВА АЛЛЮВИАЛЬНЫХ ПОЧВ ПОД МНОГОЛЕТНИМИ ТРАВАМИ И КАРТОФЕЛЕМ

Иванова Наталья Николаевна, кандидат сельскохозяйственных наук, доцент кафедры «Технологии производства и переработки растениеводческой продукции»

Зубарев Алексей Алексеевич, кандидат сельскохозяйственных наук, доцент кафедры «Технологии производства и переработки растениеводческой продукции»

Каргин Василий Иванович, доктор сельскохозяйственных наук, профессор кафедры «Технологии производства и переработки растениеводческой продукции»

ФГБОУ ВО «Мордовский государственный университет им. Н.П. Огарёва»

430904, г. Саранск, ул. Российская, 31

e-mail: agro-inst@adm.mrsu.ru

Ключевые слова: аллювиальные почвы, гранулометрический состав, плотность, пористость, окислительно-восстановительный потенциал.

Проведенное исследование вскрыло значительные различия физических свойств аллювиальной почвы под многолетними травами и картофелем. Выявлено, что под влиянием 15-летнего возделывания пропашных культур произошло возникновение на глубине 20–50 см сильно уплотненного слоя. При возделывании многолетних трав происходит разуплотнение этого слоя и снижение плотности почвы на 0,15 см3 по сравнению с посадками картофеля, увеличение общей пористости на 3–5 % и пористости аэрации на 2,8–4,7 %. Доказано, что для исследуемых почв характерен умеренно-восстановительный диапазон. В почве под посадками картофеля в слое 0–20 см ОВП выше по сравнению с участком с многолетними травами. В слое 50–120 см, наоборот, значения ОВП в посевах многолетних трав на 9,4–10,3 % выше.

Введение

Чтобы восстановить физические свойства аллювиальных почв, необходимо применить результаты исследований в организации территорий сельскохозяйственного землепользования с разработкой и освоением схем, проектов внутрихозяйственного землеустройства с внедрением овоще-травяных севооборотов взамен существующих овощных.

Важнейшим показателем плодородия почв являются их физические свойства [1–3]. В исходном состоянии аллювиальные почвы характеризуются благоприятными физическими свойствами и высоким естественным плодородием [4–6]. Вовлечение их в сельскохозяйственное производство сопровождается резкой сменой растительности, что приводит к изменению их физических свойств [7–16]. Вместе с тем изменение физических свойств под влиянием

различных групп культур (овощных культур и многолетних трав) ранее не изучалось, что и послужило основанием для проведения данного исследования.

Целью настоящей работы явилось углубленное исследование изменений физических свойств почв пойм рек Инсар и Сура при возделывании овощных культур и многолетних трав.

Объектом исследования являются почвы пойм рек Инсар и Сура, занятые картофелем и многолетними травами. Одна половина участка поймы была распахана и с 1994 г. использовалась для размещения овощного севооборота (овощи и картофель). Для обработки почвы под пропашные культуры использовали тяжелую колесную технику, а при уборке — большегрузные автомашины. Вторая половина участка была с 1994 г. занята многолетними травами. Исследуемые участки расположены перпендикулярно к руслу рек Инсар и Сура.

Объекты и методы исследований

Изучалось влияние сельскохозяйственных культур на почву. Проводились наблюдения, анализы и расчеты на почвенных образцах с глубины 0-120 см. Определяли: гранулометрический состав - пипетметодом по Н. А. Качинскому, подготовку почвы осуществляли обработкой 0,05 н. HCl и дальнейшим кипячением; плотность почвы (г/см3) – объемно-весовым методом; плотность твердой фазы – пикнометрически; пористость почвы и пористость аэрации - расчетным методом по Б. А. Доспехову и соавт. (1987).

Полученный экспериментальный материал обработан статистически методами дисперсионного, корреляционного и регрессионного анализов.

Результаты исследований

Одним из важнейших агропроизводственных свойств почвы является гранулометрический COстав, который оказывает многостороннее родие. Установлено, что в картофеля почвенном покрове поймы реки Инсар, образованном

на аллювиальных суглинках, преобладают тяжелосуглинистые почвы с довольно однородным распределением фракций в толще профиля. У аллювиальных почв центральной поймы реки Суры почвообразующей породой является песчаный аллювий, поэтому, хотя в верхнем горизонте почвы обладают тяжелосуглинистым гранулометрическим составом, на глубине преобладающей фракцией являются крупные и сред-

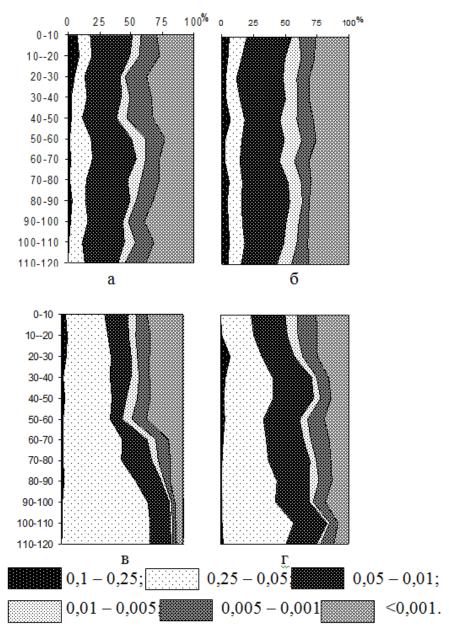


Рис. 1 - Гранулометрический состав аллювиальных почв влияние **поймы р. Инсар:** a – посевы многолетних трав; b – посадка карна ее эффективное плодо- тофеля; поймы р. Сура: θ — посевы многолетних трав; z — посадка

ние пески. По мнению исследователей [17], сельскохозяйственное использование аллювиальных почв не оказывает влияния на их гранулометрический состав, что нашло подтверждение в наших исследованиях.

Многолетние травы и посадки картофеля оказывают неодинаковое влияние на физические свойства (рис. 1, табл. 1).

Плотность почвы. В слое 20-50 см при возделывании картофеля происходит образование уплотненной прослойки (табл. 1). В

Таблица 1

Физические свойства аллювиальных почв

Расположение	1/1	Слой	П-о	Порис	Пористость, %	
разрезов	Культура	почвы, см	Плотность почвы, г/см3	общая	аэрации	
		0–10	1,15	52	21,2	
	Многолетние травы	10-20	1,10	54	25,4	
		20-30	1,10	56	27,1	
		30–40	1,20	54	22,7	
		40–50	1,25	50	18,2	
		50-60	1,30	48	14,4	
		60–70	1,30	48	13,6	
		70–80	1,29	48	17,9	
		80–90	1,29	48	20,0	
Пойма		90–100	1,31	48	19,9	
реки Инсар		0-10	0,95	62	36,8	
		10–20	1,05	58	26,9	
		20–30	1,26	50	16,8	
		30–40	1,35	46	16,5	
	Картофель	40–50	1,39	47	17,8	
		50-60	1,27	49	17,7	
		60–70	1,30	50	20,5	
		70–80	1,35	50	20,7	
		80–90	1,35	48	19,1	
		90–100	1,40	48	19,9	
	Многолетние травы	0-10	1,18	51	23,4	
		10–20	1,16	52	24,8	
		20–30	1,19	50	22,8	
		30–40	1,23	51	23,7	
Пойма		40-50	1,25	50	21,6	
		50-60	1,30	50	20,8	
		60–70	1,37	47	19,5	
		70–80	1,43	47	20,1	
		80–90	1,45	46	18,9	
		90–100	1,44	45	18,3	
реки Суры	Картофель	0-10	0,98	61	36,9	
		10–20	1,10	56	31,9	
		20–30	1,24	50	20,8	
		30–40	1,44	45	18,6	
		40–50	1,42	45	20,2	
		50–60	1,32	49	23,0	
		60–70	1,35	48	22,9	
		70–80	1,38	47	22,8	
		80–90	1,40	46	19,9	
		90–100	1,43	47	21,3	

пахотном слое почв (0–20 см) центральной части пойм рек Инсар и Сура наименьшая плотность в течение вегетации складывается в почве, занятой посадками картофеля. Использование тяжелой техники при возде-

лывании картофеля приводит к уплотнению 20–50 см слоя почвы. В более глубоких слоях почвы уплотнения почвы под влиянием монокультуры пропашных культур и использования тяжелой техники не происходило.

Масса корней в посевах многолетних трав и картофеля, т/га

	Масса сухих корней											
Вариант	Слой почвы, см											
	0 -10		10-20		20-30		30-40		40-50		0-50	
	т/га	%	т/га	%	т/га	%	т/га	%	т/га	%	т/га	%
Многолетние травы, пойма р. Инсар	1,16	32,5	1,07	30,0	0,65	18,3	0,41	11,4	0,28	7,9	3,57	100,0
Картофель, пойма р. Инсар	0,85	44,6	0,71	37,3	0,19	9,7	0,11	5,5	0,05	2,8	1,90	100,0
Многолетние травы, пойма р. Сура	1,35	30,6	1,20	27,2	0,90	20,5	0,71	16,0	0,25	5,7	4,41	100,0
Картофель, пойма р. Сура	0,75	45,2	0,60	36,1	0,16	9,7	0,10	6,0	0,05	3,0	1,66	100,0

Снижение плотности в посевах многолетних трав приводило к увеличению общей пористости почвы на 3–5 % и пористости аэрации на 2,8–4,7 %. Возделывание картофеля снижает общую пористость и пористость аэрации подпахотного слоя на изучаемых аллювиальных почвах.

Плотность почвы связана с особенностями развития корневых систем растений [18]. Масса корней, которая поступает с посевов многолетних трав, в 1,9–2,7 раза превышает количество, которое поступает с посевов картофеля (табл. 2). Кроме того, если корневая система картофеля располагается в основном в пахотном слое, то корневая система многолетних трав охватывает всю толщу почвенного профиля, тем самым улучшает физические свойства почвы и увеличивает содержание гумуса.

Изменение плотности почвы оказало влияние на величину окислительно-восстановительного потенциала (ОВП), который уменьшается вниз по профилю почвы (табл. 3).

В посевах многолетних трав слой 0–90 см слабо дифференцирован в отношении ОВП и не выходит за рамки критических показателей, характеризующих процессы

восстановления. В посадках картофеля оптимальные и хорошие значения ОВП отмечены только в слое 0—30 см, в более нижних слоях этот показатель выходит за рамки критических значений (270 мВ). Изменения ОВП в зависимости от вида возделываемых культур достоверны. Результаты математической обработки свидетельствуют об обратной взаимосвязи окислительно-восстановительного потенциала почвы с ее плотностью. Коэффициент корреляции составлял 0,92. Уравнение регрессии свидетельствует, что с увеличением плотности почвы на 0,1 г/см3 окислительно-восстановительный потенциал снижается на 21,16 мВ:

 $y = 557,82 - 211,63 \cdot X.$

Многолетние травы благоприятно сказываются на окислительно-восстановительном потенциале аллювиальных почв (табл. 3). Оптимальные условия для нитрификации складываются при ОВП, равном 350–500 мВ [19]. Резкое падение потенциала вызывает денитрификацию и образование закисных, зачастую токсичных для большинства растений соединений железа и марганца, что отмечается при ОВП, равном 200–270 мВ. Для исследуемых почв характерен умеренновосстановительный диапазон [20]. В услови-

Глубина взятия образца, см	Место закладки разрезов									
	пойм	а р. Инсар		пойма р. Суры						
	многолетние травы	картофель	HCP _{0.5}	многолетние травы	картофель	HCP _{0.5}				
0–10	320	362	10,3	324	353	15,2				
10-20	325	338	12,2	321	348	13,8				
20–30	318	308	7,2	312	294	14,1				
30–40	294	255	17,6	307	242	29,4				
40–50	289	250	29,1	299	252	25,8				
50-60	284	251	31,4	287	249	26,1				
60–70	277	247	33,9	280	254	29,4				
70–80	280	254	33,9	269	251	29,6				
80–90	272	250	23,6	265	248	24,9				
90–100	266	247	27,5	260	252	18,6				
100-110	262	250	18,3	263	247	24,1				
110–120	256	250	20,7	247	244	17,4				

ях усиления антропогенной нагрузки с внедрением монокультуры пропашных культур, использования тяжелой техники, при отсутствии органических удобрений происходит снижение ОВП.

Выводы

Таким образом, проведенными исследованиями вскрыты значительные различия показателей плодородия почвы под многолетними травами и картофелем. Выявлено, что в слое 0–20 см плотность почвы в посевах картофеля находилась в пределах допустимой, в слое 20–40 см — она повышалась на 11,6–13,0 %, в слое 40–50 см — на 8,0–11,8 % в сравнению с оптимальной. Снижение плотности в посевах многолетних трав приводило к увеличению общей пористости почвы на 3–5 % и пористости аэрации на 2,8–4,7 % по сравнению с почвой под посадками картофеля.

Для исследуемых почв характерен умеренно-восстановительный диапазон. Оптимальные условия для нитрификации складываются при ОВП, равном 350–500

мВ. В посевах многолетних трав 0–90 см слое почвы ОВП не выходит за рамки критических показателей. В посадках картофеля оптимальные и хорошие значения ОВП отмечены только в слое 0–30 см, в более нижних слоях этот показатель снижается до критических (270 мВ) величин.

Для восстановления физических свойств аллювиальных почв необходима организация территорий сельскохозяйственного землепользования с разработкой и освоением схем, проектов внутрихозяйственного землеустройства и внедрением овоще-травяных севооборотов взамен существующих овощных.

Библиографический список

1. Кузнецова, И.В. Нормативы изменения физических свойств пахотных черноземов лесостепной зоны европейской России в условиях интенсивного сельскохозяйственного использования / И.В. Кузнецова, В.Ф. Уткаева, А.Г. Богдарев // Почвоведение. - 2014. - № 1. - С.71–81.

- 2. Зонально-провинциальные нормативы изменений агрохимическитх, физико-химических и физических показателей пахотных почв европейской территории России при антропогенных воздействиях: методические рекомендации / А.С. Фрид, И.В. Кузнецова, И.Е. Королева, А.Г. Бондарев, Б.М. Когут, В.Ф. Уткаева, Н.А. Азовцева.-М.: Почв. институт им. В.В. Докучаева, 2010.-176с.
- 3. Плодородие черноземов Северного Кавказа при их использовании / Г.Г. Данилов, В.В. Агеев, А.А. Моисеев, В.И. Воронин, И.Ф. Каргин // Почвоведение. 1982. № 12. С.64.
- 4. Добровольский, Г. В. Почвы речных пойм центра Русской равнины / Г.В. Добровольский.- М.: Изд-во Московского университета, 1968.- 295с.
- 5. Galic, B. Soil compaction as a consequence of utilization modes / B. Galic, G. Dugalic, Z. Sredojevic // J. of Agricultural Sciences.- 2004.- № 2.- V. 49. P.- 179-185.
- 6. Lindell, L. Environmental effects of agricultural expansion in the upper Amazon / L. Lindell // A Study of River Basin Geochemistry and Hydrochemistry, and Farmers Perceptions.- Linnaeus University Press, 2011.-110p.
- 7. Ахтырцев, Б.П. Почвы пойм и их использование / Б.П. Ахтырцев, А.С. Щетинина. Саранск: Мордовское книжное издательство, 1975.- 120с.
- 8. Евдокимова, Т.И. Роль травянистой растительности в почвообразовательном процессе в условиях поймы реки Москвы / Т.И. Евдокимова, Л.А. Рудина // Почвоведение. -1963.- № 4.- С.5—19.
- 9. Зайдельман, Ф.Р. Деградация почв как результат антропогенной трансформации их водного режима и защитные мероприятия / Ф.Р. Зайдельман // Почвоведение. 2009. № 1. С.93—105.
- 10. Зайдельман, Ф.Р. Деградация и восстановление почв поймы р. Москва за последние 50 лет / Ф.Р. Зайдельман, М.В. Беличенко, А.С.Бибин // Почвоведение.- 2013.- № 11.- С.1377–1386.
- 11. Зайдельман, Ф.Р. Изменение физических свойств пойменных почв под влиянием дренажа, дождевания и орошения в овощных севооборотах / Ф. Р. Зайдельман,

- М.В. Беличенко, А.Д. Пудле // Вестник МГУ. Серия 17 «Почвоведение».- 1997.- № 1.- С. 36–42.
- 12. Каргин, И. Ф. Способы основной обработки аллювиальной почвы и продуктивность звена севооборота / И.Ф. Каргин, А.А. Зубарев, Н.Н. Иванова // Земледелие.-2014.-№ 1.- С.19–21.
- 13. Влияние последействия глубины и способов основной обработки на воднофизические свойства пойменной почвы / И.Ф. Каргин, А.А. Зубарев, Н.Н. Иванова, Н.А. Перов // Достижения науки и техники АПК.-2008.- № 1.- С.17–19.
- 14.Убугунов, Л.Л. Почвы речных пойм аридных территорий внутренней Азии (р. Завхан, Монголия) / Л.Л. Убугунов, В.И. Убугунова // Почвоведение.- 2012.- № 3.- С. 277–286.
- 15. Уткаева, В. Ф. Изменение агрофизических свойств пойменных почв при сельскохозяйственном использовании / В.Ф. Уткаева // Почвоведение.- 1994.- № 11.- С.99—106.
- 16. Уткаева, В.Ф. Деградация физических свойств аллювиальных почв в результате агротехногенеза / В.Ф. Уткаева, В.Н. Щепотьев // Доклады Российской академии сельскохозяйственных наук.- 2003.- № 5.- С.28–30.
- 17. Яблонских, Л.А. Агрогенная трансформация пойменных почв Среднерусской лесостепи / Л.А. Яблонских // Проблемы антропогенного почвообразования. Тезисы докладов международной конференции.- М., 1997.- С. 250–253.
- 18. Изменение мощности корнеобитаемого слоя и продуктивности сельскохозяйственных культур в зависимости от доз удобрений и глубины их заделки / Н.С. Немцев, В.И. Каргин, А.А. Моисеев, И.Ф Каргин, Ю.И. Каргин // Доклады Российской академии сельскохозяйственных наук.- 2002.- С.20.
- 19. Кауричев, И.С. Почвоведение / И.С. Кауричев.-М.: Агропромиздат, 1989.- 720с.
- 20. Агроэкологическая оценка земель, проектирование адаптивно-ландшафтных систем земледелия и агротехнологий: методическое руководство.- М.: ФГНУ «Росинформагротех».- 2005.- 784с.