05.20.00 ПРОЦЕССЫ И МАШИНЫ АГРОИНЖЕНЕРНЫХ СИСТЕМ

УДК 631.3

ОСУШКА ОТРАБОТАННЫХ МАСЕЛ С ИСПОЛЬЗОВАНИЕМ ДЕЭМУЛЬГАТОРА

Глущенко Андрей Анатольевич, кандидат технических наук, доцент кафедры «Эксплуатация мобильных машин и технологического оборудования»

ФГБОУ ВПО «Ульяновская ГСХА им. П.А. Столыпина»

432017, г. Ульяновск, бульвар Новый Венец, 1; тел.: 89374564933;

e-mail: oildel@yandex.ru.

Ключевые слова: осушка, отработанное масло, деэмульгатор

Для осушки отработанных масел предложен деэмульгатор на основе профилированного сопла Лаваля. Определены условия для обеспечения испарения растворенной в масле воды при прохождении его через сопло. Представлены результаты экспериментальных исследований предлагаемого деэмульгатора.

Введение

В настоящее время все технологические процессы очистки масел основаны либо на его нагреве, либо на использовании реагентов (коагулянтов) для поглощения воды (осушки). К высокотемпературным процессам относят: перегонку (атмосферно-вакуумную или в присутствии катализаторов), термический крекинг, термодиффузионное разделение и др. Использование существующих способов требует дорогостоящего оборудования. Кроме того, технологический процесс очистки масел достаточно сложен, а выход товарного продукта не превышает 60...80 %. Использование коагулянтов приводит к образованию труднорегенерируемых отходов в виде прореагировавших веществ, утилизация которых зачастую представляет большую экологическую опасность, чем сами отработанные масла. Использование таких технологий в условиях небольших аграрных предприятий неэффективно, и при незначительных объемах переработки (до 1000 т в год) себестоимость восстановленных масел превышает стоимость товарных масел в 1,5...3 раза [1].

Таким образом, необходимо использовать безопасные технические средства, обеспечивающие эффективное осушение отработанного масла, имеющие высокую производительность и низкую стоимость.

Объекты и методы исследований

В качестве технических средств для осушки масла рекомендуется использовать деэмульгаторы, работа которых основана на истечении жидкости через суживающееся сопло. Принцип работы деэмульгатора предполагает выделение паров воды из недогретого до насыщения и вскипающего при истечении через сопло отработанного

масла. В выходном срезе сопла деэмульгатора формируется сверхзвуковая струя мелкодисперсной парокапельной структуры. В условиях больших перепадов входного P_1 и выходного P_2 давлений и критической скорости, равной местной скорости звука, осуществляется процесс расширения масла с высоким объемным паросодержанием $(x_n \to 1)$. Наиболее известными устройствами, в которых реализуются эти условия, являются суживающиеся и расширяющиеся сопла Лаваля.

Согласно многочисленным исследованиям [2, 3, 5], установлено, что процесс парообразования в расширяющихся соплах при истечении недогретой до насыщения жидкости (рис. 1) начинается в области минимального сечения d_{min} .

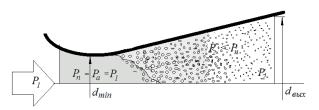


Рис. 1 - Схема процесса парообразования в сопле Лаваля при истечении недогретой жидкости (обозначения в тексте)

Это объясняется тем, что в жидкости, поступающей в сопло, давление пара внутри пузырьков P_n равно давлению насыщения Р и давлению потока жидкости Р .. При пересечении минимального сечения увеличивается скорость с одновременным падением давления в этом месте. Если абсолютное давление при этом достигает значения, равного давлению насыщенных паров жидкости $P_2 = P_3$ при данной температуре, или значения, равного давлению, при котором начинается выделение из нее растворимых газов $P_2 = P_n$, то в данном месте потока наблюдается интенсивное парообразование (кипение) и выделение газов. Таким образом, для испарения растворенной в масле воды при прохождении через сопло, необходимо обеспечить соблюдение неравенства $P_2 < P_a = P_1$ или $P_2 < P_n = P_1$). Зная, что с увеличением скорости масла давление снижается, в сопле необходимо обеспечить такую скорость масла, которая обеспечивает снижение давления потока масла до P_{2} .

Исходя из классической теории истечения жидкости или газа через суживающееся сопло, скорость потока и массовый расход определяют сравнением критического отношения давлений $\beta > P_2/P_3$.

Показатель адиабаты процесса для влажного насыщенного пара [2]

$$k = 1,035 + 0,1x_n, (1)$$

где x_n - содержание водяного пара в масле, %.

По полученному значению адиабаты k определяют критическое отношение давлений β [4]. Исходя из условия $\beta = P_2/P_1$ и $P_2 = P_{amm'}$ давление подачи масла в сопло

$$P_1 = \beta P_2. \tag{2}$$

Исходя из требования перепада давления, которое необходимо обеспечить при прохождении отработанного масла через сопло, определяют конструктивно-геометрические параметры деэмульгатора - диаметр минимального сечения $d_{\scriptscriptstyle min}$, диаметр выходного сечения $d_{\scriptscriptstyle essx}$, а также длину I расширяющейся части сопла (рис. 2).

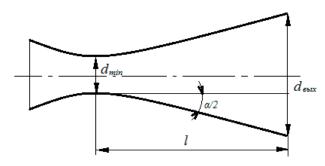


Рис. 2 - Схема расчета сопла деэмульгатора: α - угол расширения сопла

Поскольку в минимальном сечении сопла должны обеспечиваться критическая скорость истечения и максимальный массовый расход масла, площадь минимального сечения рассчитывают по формуле:

$$q_{\text{max}} = \psi S_{\text{min}} \sqrt{\frac{P_1}{\nu_1}},\tag{3}$$

где $\,^{\psi}\,$ - коэффициент, зависящий от показателя адиабаты; S_{\min} - площадь минимального сечения сопла, м²; P_{1} - давление

Рис. 3 – Установка деэмульгирования масел (обозначения в тексте)

Рис. 4 — Профилированное сопло деэмульгатора

потока масла на входе, МПа; V_1 - удельный объем масла при входе в сопло, м 3 /кг.

Отсюда, при известных значениях давления и скорости потока масла, площадь сечения сопла

$$S_{\min} = \frac{q_{\max}}{\psi \sqrt{\frac{P_1}{\nu_1}}}.$$
(4)

Задавшись необходимым массовым расходом $q_{\rm max}$, исходя из производительности установки деэмульгирования, минимальный диаметр сопла

$$d = \sqrt{\frac{q_{\text{max}}}{\psi \pi \sqrt{\frac{P_1}{\nu_1}}}}.$$
(5)

При допущении равенства массового расхода недогретой жидкости при прохождении через минимальное и выходное сечения сопла, площадь выходного сечения

$$S_{\text{\tiny gibl}} = \frac{q_{\text{max}}}{\sqrt{2\frac{k}{k-1}\frac{P_1}{\nu_1} \left[\left(\frac{P_2}{P_1}\right)^{\frac{2}{k}} - \left(\frac{P_2}{P_1}\right)^{\frac{k+1}{k}} \right]}},$$
 (6)

где $P_{_2}$ - давление потока масла на выходе из сопла, МПа.

Поскольку на границе среза сопла при выходе струи выходу пара из масла оказывает сопротивление сила поверхностного натяжения масла D_{σ} , то пары воды в сечении сопла будут выделяться при выполнении следующего условия:

$$P_n + P_{\sigma} > P_2$$
, r.e $P_1 = P_n + P_{\sigma} > P_2$. (7)

Тогда, с учетом этого условия, уравнение (6) примет вид:

$$S_{\text{\tiny glaix}} = \frac{q_{\text{\tiny max}}}{\sqrt{2\frac{k}{k-1}\frac{P_n + P_{\sigma}}{\nu_1} \left[\left(\frac{P_2}{P_n + P_{\sigma}}\right)^{\frac{2}{k}} - \left(\frac{P_2}{P_n + P_{\sigma}}\right)^{\frac{k+1}{k}} \right]}}.$$
(8)

Длину расширяющейся части сопла определим из соотношений в прямоугольном треугольнике, образуемом минимальным и выходным сечениями и углом расширения сопла $tg(\alpha/2)$ (рис. 2). Тогда

$$tgrac{lpha}{2}=rac{d_{_{ ext{вых}}}-d_{_{ ext{min}}}}{2l}.$$
 (9)
Откуда $l=rac{d_{_{ ext{вых}}}-d_{_{ ext{min}}}}{2tgrac{lpha}{2}}.$

Результаты исследований

На основании расчетов получены следующие конструктивно-геометрические параметры деэмульгатора в виде сопла Лаваля: диаметр минимального сечения 5 мм, диаметр выходного сечения - 14 мм, длина расширяющейся части сопла - 117 мм при угле расширения сопла 10°.

Исследования процесса осушки отработанного масла проводили на экспериментальной установке (рис. 3), включающей в себя емкость для нагрева масла 1, масляный насос НШ-32У 2, деэмульгатор 3 (рис. 4). Масло нагревали в емкости с помощью электрических тэнов. Перед началом исследований определяли содержание

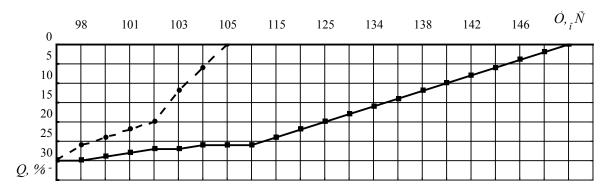


Рис. 5 – Изменение содержания воды в масле Q от температуры нагрева t —— - без деэмульгатора, — - - с деэмульгатором

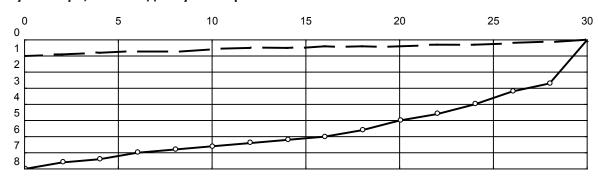


Рис. 6 – Зависимость времени т обезвоживания от содержания воды Q в масле без деэмульгатора, – – - с деэмульгатором

воды в масле. В процессе обезвоживания с интервалом нагрева 20 °С отбирали пробы для определения процентного содержания в масле воды. Масло нагревали и осушали до отсутствия воды в пробах.

Деэмульгирование отработанных масел проводили стандартным методом — нагревом масла и с использованием предлагаемого деэмульгатора. В процессе исследований установлено, что для осушки традиционным способом водно-масляную эмульсию необходимо нагреть до температуры 150 °C (рис. 5), а с использованием деэмульгатора - только до 105 °C.

При этом использование деэмульгатора позволяет осушить отработанное масло всего за час, в то время как осушка того же объема водномасляной эмульсии без деэмульгатора занимает 8 часов (рис. 6).

Выводы

На основании проведенных исследований установлено, что использование деэмульгатора позволяет осушить масло при температуре 105 °C, в отличие от наиболее распространенного метода осушки, при котором тре-

буется нагрев масла до 150 °С. При температуре 105 °С масло не окисляется, что позволяет сохранить его эксплуатационные свойства, а время осушки снижается с 8 ч до 1 ч.

Библиографический список

- 1. Глущенко, А.А. Экологически безопасные технологии для восстановления эксплуатационных свойств отработанного моторного масла с использованием гидроциклона: монография / А.А. Глущенко. Ульяновск: УГСХА, 2011. 185 с.
- 2. Прандтль, Л. Гидроаэромеханика / Л. Прандтль. Москва Ижевск: R&C Dynamics, 2000. 576 с.
- 3. Лойцянский, Л.Г. Механика жидкости и газа / Л.Г. Лойцянский. - М.: Наука, 1987. - 840 с.
- 4. Гольдштейн, Р.В., Городцов В.А. Механика сплошных сред. Часть 1. Основы и классические модели жидкостей. М.: Наука, Физматлит, 2000. 256 с.
- 5. Ландау, Л.Д. Гидродинамика / Л.Д. Ландау, Е.М. Лившиц.. М.: Наука, 1986. Т. 6. 736 с.