пасности Российской Федерации [Электронный ресурс] .- Режим доступа :www\mcx\ru

- 2. Монастырский, О.А. Зерновое хозяйство основа продовольственной безопасности страны / О.А. Монастырский, М.П. Селезнева // АГРО XX1. 2008.-№ 4-6.- С. 3-6.
- 3. Морозов, В.И. Средообразующие функции зернобобовых культур при биологизации севооборотов лесостепи Поволжья / В.И. Морозов // Вестник Ульяновской государственной сельскохозяйственной академии .- 2010. №1(11). С.3-15.
- 4. Агроэкологическая оценка земель, проектирование адаптивно-ландшафтных систем земледелия и агротехнологий: методическое руководство / под ред. В.И. Кирюшина, А.Л. Иванова.-М: ФГНУ «Росинформагротех», 2005.-784с.
- 5. Адаптивно-ландшафтная система земледелия Ульяновской области.- Ульяновск: ООО «Колор Принт», 2013.-354с.
- 6. Морозов, В.И. Дифференциация систем земледелия и их практическое освоение в лесостепи Поволжья / В.И. Морозов: тематический сборник научных трудов УГ-СХА «Дифференциация систем земледелия и плодородия чернозема лесостепи Поволжья». Ульяновск, 1996. С.12-31.

- 7. Голубев, А. Парадоксы развития аграрной экономики России / А. Голубев // Вопросы экономики.-2012.-№1.- С.115-126.
- 8. Сычев, В.Г. Динамика агрохимических показателей почвенного плодородия Европейской территории России / В.Г. Сычев, С.И. Цыганок : материалы Всероссийского «Круглого стола» на тему «Ресурсосберегающие технологии опыт, проблемы, перспективы». Ульяновск, 2007.- с. 73-81.
- 9. Басенкова, С.В. Эффективность зернового производства: региональный аспект / С.В. Басенкова, Е.А. Смирнова // Экономика и предпринимательство.- 2014. –№ 1-2. C.304-308.
- 10. Морозов, В.И. Засуха 2010: учесть уроки, ослабить риски / В.И. Морозов // Поволжье АГРО.- № 1-2 .- С.32-35.
- 11. Басенкова, С.В. Продуктивность зернового хозяйства и его эффективность в Среднем Поволжье / С.В. Бассенкова, В.И. Морозов: Материалы всероссийской научно-практической конференции 27-28 июня 2013 «Перспективные направления инновационного развития сельского хозяйства (К 170 летию со дня рождения К.А. Тимирязева)». Ульяновск, 2013.— С. 22-27.

УДК 632.95

ЭКОТОКСИКОЛОГИЧЕСКАЯ ОЦЕНКА ПРИМЕНЕНИЯ ПЕСТИЦИДОВ НА ТЕРРИТОРИИ УЛЬЯНОВСКОЙ ОБЛАСТИ

Тойгильдина Ирина Александровна, кандидат сельскохозяйственных наук, доцент кафедры «Почвоведение, агрохимия и агроэкология»

Тойгильдин Александр Леонидович, кандидат сельскохозяйственных наук, доцент кафедры «Земледелие и растениеводство»

Еремина Светлана Александровна, студентка агрономического факультета ФГБОУ ВПО «Ульяновская ГСХА им. П.А. Столыпина» 432017, г. Ульяновск, бульвар Новый Венец, 1; тел.: 8(8422)55-95-35; e-mail: irina1082@mail.ru

Ключевые слова: пестициды, инсектициды, фунгициды, гербициды, экотоксикологическая оценка, защита растений.

В статье приводятся результаты анализа применяемых объемов и ассортимента

пестицидов в сельскохозяйственных предприятиях Ульяновской области. По методике М.С. Соколова и М.А. Глазовской выделены особо опасные, средне- и малоопасные химические группы пестицидов и проведена оценка их применения по интегральному экотоксикологическому индексу (ИЭТИ).

Введение

Сельскохозяйственное производство выполняет глобальные задачи, связанные, в первую очередь, с решением продовольственной безопасности нашей страны. Согласно Государственной программе развития сельского хозяйства до 2020 года, намечается значительный рост производства сельскохозяйственной продукции [1]. К примеру, в Ульяновской области планируется производить до 1629,5 тыс. тонн зерна, что составляет 250 % по отношению к объему производства 2012 года.

Потенциалом роста производства продукции растениеводства является увеличение посевных площадей и совершенствование агротехнологий, направленных на повышение продуктивности сельскохозяйственных культур, главным образом за счет освоения факторов интенсивного развития и рационального использования агроландшафтов (агроэкосистем), в современном понимании таким требованиям отвечают адаптивно-ландшафтные системы земледелия [2, 3, 4].

Среди прочих факторов роста продуктивности растений важное место занимает защита растений, и при ограниченных земельных ресурсах защита растений реально может решить проблему продовольственной безопасности [5].

Защита растений постоянно совершенствуется, изменяются принципы и методы, меняются требования к экономической эффективности, безопасности и экологической приемлемости способов защиты растений.

В мировом масштабе производство, применение и ассортимент пестицидов с каждым годом увеличивается. Несомненно, что и в нашей стране с укреплением экономики возрастет применение средств защиты растений, что потребует еще более пристального внимания к проблеме экологической приемлемости применения гербицидов и реабилитации почв, загрязненных

остатками ядохимикатов [6, 7].

При планировании применения пестицидов в сельскохозяйственном производстве следует учитывать потенциальную опасность распространения и накопления токсичных веществ на территории зон, районов, хозяйств или даже отдельных севооборотов. Для этой цели используют различные методики [8, 9, 10, 11, 12].

Объекты и методы исследований

Для характеристики экотоксикологической ситуации нами была использована методика, разработанная М.С. Соколовым и М.А. Глазовской [13]. В основу оценки положены следующие основные показатели: МДУ, ПДК, действие на органолептические качества урожая, летучесть, токсичность, кумуляция, персистентность в почве, действие на почвенные ферментативные процессы и биоту, миграция в почве, поступление в растения и фитотоксическое действие, на действие инсоляции, коэффициент избирательности. После проведения оценки по критериям и суммирования баллов препараты распределяются по 3 группам: особо опасные - сумма баллов > 20, среднеопасные – сумма баллов от 20 до 13 и малоопасные – сумма баллов < 13.

Оценка уровня опасности от применения пестицидов на территории проводилась по следующим показателям: скорректированному оценочному индексу для отдельных препаратов ($\mathcal{U}_{c\kappa}$), среднему оценочному индексу используемого ассортимента пестицидов (\mathcal{U}_{cp}), величине нагрузки пестицидов на единицу земельной площади (условная доза) (\mathcal{Y}_{∂}), скорректированному индексу способности самоочищения территории ($\mathcal{UC}_{c\kappa}$) и интегральному экотоксикологическому индексу (\mathcal{U} ЭТ \mathcal{U}).

Скорректированный оценочный индекс (\mathcal{U}_{ck}) применяется только для инсектицидов и позволяет определить, какой из препаратов ассортимента представляет наибольшую экологическую опасность и

должен в первую очередь учитываться при контроле уровня его остатков в почве и продуктах урожая. Рассчитывается по формуле:

Иск=(Ku+1)*Бо

Ku - коэффициент использования пестицида

Бо - оценочный бал пестицида.

Коэффициент использования пестицидов (Ки) представляет собой относительную долю каждого препарата в общем объеме всего использованного ассортимента пестицидов. Для его расчета площадь, обработанную отдельным пестицидом (S), делят на общую площадь применения пестицидов (So):

Ku=S/So

Средний оценочный индекс (Иср) характеризует усредненный уровень опасности используемого ассортимента пестицидов на данной территории и представляет собой средневзвешенное из оценочных баллов каждого препарата. Для его расчета определяется сумма произведений коэффициента использования каждого пестицида на его оценочный балл:

Иср=∑Ки*Бо

Условная доза (Уд) рассчитывается путем деления общего количества использованных пестицидов в препаративных формах на общую площадь сельскохозяйственных угодий.

Для объективной оценки экотоксикологической ситуации в различных районах необходимо учитывать и такой параметр, как способность территории к самоочищению, которая может быть выражена усредненным количественным показателем - скорректированным индексом ($NC_{c\kappa}$), представляющим средневзвешенный оценочный балл для данного региона.

Различной способности к самоочищению соответствуют следующие индексы: очень интенсивная - больше 0,80, интенсивная - 0,80-0,61, умеренная - 0,60-0,41, слабая - 0,40-0,20, очень слабая - меньше 0,20.

Для оценки экотоксикологической ситуации районов используют интегральный экотоксикологический индекс (ИЭТИ), учитывающий указанные выше параметры:

ИЭТИ=Иср*Уд/Иск

Малоопасная ситуация характеризуется индексом меньше 50, среднеопасная — от 50 до 150 и опасная — больше 150.

Результаты исследований

Ульяновская область располагает потенциально пригодной площадью сельскохозяйственных угодий (до 60% всех земель), высокой долей пашни (до 80%) и наличием естественных кормовых угодий – пастбищ (до 380 тыс.га га) и сенокосов (до 40 тыс. га). Агропочвенные и агроклиматические условия благоприятны для интенсивного ведения сельского хозяйства. Однако продуктивность сельскохозяйственных культур остается низкой, нарушена структура посевных площадей, требуется совершенствование элементов системы земледелия [14]. Остается напряженной фитосанитарная

Таблица 1 Объемы применения пестицидов на территории Ульяновской области за 2011-2013 гг. (по данным Россельхозцентра Ульяновской области)

06- 00	Объем однократной об- работки			% к посевным
Объем применения пестицидов	2011 год	2012 год	2013 год	площадям в сред- нем за 3 года
Инсектициды тыс.га	95,23	210,74	189,46	16,5
Фунгициды, тыс.га	84,90	80,67	75,40	8,0
Гербициды, тыс.га	434,44	457,63	411,88	43,6
Родентициды, тыс.га	0,60	0,00	0,00	0,0
Десиканты и дефолианты, тыс.га	17,37	20,91	13,63	1,7
Протравливание фунгицидами, тыс. тонн	99,22	110,34	103,75	-
Протравливание инсектицидами, тыс.тонн	0,00	0,03	2,03	-

Таблица 2 Экотоксикологическая оценка применяемых пестицидов на территории Ульяновской области по методике М.С. Соколова и М.А. Глазовской [11]

Группа	Группа пестицидов по экотоксикологической оценке, сумма баллов					
пестици- дов	Особо опасные, > 20	Среднеопасные, 13-20	Малоопасные <13			
Инсекти- циды	диазинон и кар- бофос (фосфо- рорганические соединения), се- мафор (бифен- трин)	шарпей, ципи (циперметрин), альфа- шанс, фастак, альтерр, (альфа-ципер- метрин), каратэ зеон, брейк (лямбда- цигалотрин), децис (дельтаметрин) конфидор, конфидор экстра, танрек, табу (имидаклоприд), актара, крузер (тиаметоксам), регент (фипронил)	-			
Фунги- циды	зол (бензимида- золы), суми-8 (ди- никоназол), ку- простат, медный купорос (неорга-	танос (фамаксадон + цимоксанил), фалькон (спироксамин + тебуконазол + триадименол), альто супер (про- пиконазол + ципроконазол), барьер колор, раксил, дозор (тебуконазол), дивиденд стар, даймонт супер (дифе- ноконазол + ципроконазол), кинто дуо (тритиконазол + прохлораз)	рекс с (эпоксиконазол), рекс дуо (тиофанат-метил, эпоксиконазол), иншур перформ (тритиконазол + пираклостробин), витавакс (карбоксин + тирам), витоцид (флутриафол + тиабендазол)			
Гербици- ды	фи 90 (ацетох- лор), пивот (има- зетапир), линтур	Артстар, грандстар, гранд плюс, тризлак, мортира (трибенурон-метил), фюзилад супер (флуазифоп-П-бутил), уплет гранд (2,4-Д + дикамба), ковбой супер, пропалол (дикамба+хлорсульфурон), балерина (2,4Д + флорасулам), аминка, эстерон (2,4Д), дианат (дикамба), элант премиум (2,4Д+дикамба), пума супер (феноксапроп-П-этил + мефенпир-диэтил), титус (римсульфурон метил) карибу (трифлусульфурон-метил)	раундап, глифосат, глин, ураган, торнадо (глифо- сат)			

обстановка на полях хозяйств Ульяновской области, несмотря на увеличение объемов применения пестицидов за последние годы (табл. 1).

В период 2011-2013 гг. внесение гербицидов было проведено на 434,7 тыс. га, или 43,6 % посевных площадей, фунгициды применялись на 80,3 тыс. га, или 8 %. Возрос объем применения инсектицидов с 95,23 тыс. га в 2011 г. до 189,46 тыс. га (16,5 %) в 2013 г.

Десикация проводилась на площади 13,63 - 20,91 тыс. га, что составляет 1,7 % от площади пашни.

Изучение ассортимента пестицидов показало, что в хозяйствах Ульяновской области применялись препараты, существенно различающиеся по токсиколого-гигиеническим, эколого-агрохимическим и экоток-

сикологическим критериям. Ассортимент пестицидов был представлен особо опасными, среднеопасными и малоопасными препаратами (табл. 2).

К особо опасным препаратам относят фосфорорганические соединения (ФОС), производимые на основе диметоата (би-58 новый, рогор), диазинона (диазинон), малатиона (карбофос). Несмотря на то, что они обладают системным действием и зарегистрированы для применения на многих культурах, являются интенсивными загрязнителями окружающей среды вследствие высоких норм расхода (1–5 л/га) и токсичности действующих веществ (2 и 3 класс опасности) и имеют оценочный балл более 20 единиц. В настоящее время они находят все меньшее применение и постепенно вытес-

няются более безопасными препаратами из других групп. К группе «особо опасные» также относят препараты на основе бифентрина (семафор, талстар), которые запрещены для применения на территории Евросоюза.

Менее опасными инсектицидами в сравнении с ФОС выступают синтетические пиретроиды, преимущество их в том, что нормы расхода этих препаратов составляют десятки граммов, они имеет высокую начальную активность и низкую токсичность для теплокровных и человека с периодом полураспада в почве до 3 месяцев [15]. В хозяйствах Ульяновской области наибольшее распространение получили препараты, содержащие циперметрин, альфа-циперметрин, лямбда-цигалотрин, дельтаметрин, имеющие оценочный балл 14-18 единиц.

Препараты на основе неоникатиноидов (имидаклоприд, тиаметоксам и др.) являются высокоэффективными при применении в качестве протравителей семян и клубней, а также в течение вегетации, что делает их популярными среди сельхозпроизводителей. К широко применяемым пестицидам из группы неоникатиноидов относятся актара, престиж, табу, конфидор. Однако неоникатиноиды имеют высокую персистентность в почве и опасность для пчел (1 класс), что может существенно ограничить их применение, так, с 2013 года на территории Евросоюза введен запрет на применение пестицидов данного класса соединений.

Оценка применяемых фунгицидов показала, что очень распространенная группа бензимедазолов (беномил, фундозол) относится к особо опасным пестицидам, что связано с низкими значениями показателей МДУ и ПДК, а также с высокой персистенстностью в окружающей среде [16]. К группе особо опасных пестицидов также относятся медьсодержащие препараты (оценочный балл более 20 единиц).

В последние годы бензимидазолы постепенно заменяются на производные триазолов. Триазолы - группа фунгицидов, представленная большим количеством препаратов, относящихся к средне- и малоопасным (оценочный балл от 9 до 18 единиц). В 2013 году в хозяйствах региона наибольшее

распространение получили протравители семян на основе тебуконазола (раксил, доспех, барьер колор и др.), а также дифеноконазол + ципроконазол (дивиденд стар, даймонт супер).

В России на долю гербицидов приходится наибольший объем применяемых пестицидов, что связано с высокой засоренностью полей, однако проблема фитосанитарного состояния агроценозов остается напряженной [17].

Увеличение объемов применения опасных гербицидов может иметь негативные последствия: накопление связанных остатков в почве, поступление в грунтовые и поверхностные воды, повреждение чувствительных культурных растений в севообороте. Указанные проблемы особенно актуальны для персистентных гербицидов, к которым относятся, прежде всего, почвенные: ацетохлор, трофи 90 (ацетохлор), дуал голд (с-метолахлор), пивот (имазетапир) и другие. В последние годы возрос объем их применения, что объясняется ростом площади под подсолнечником с 67,4 тыс. га в 2009 г. до 180,0 тыс. га в 2013 г. Не снижаются объемы применения имидазолиноновой группы, что связано с их высокой биологической и экономической эффективностью [18].

Наибольший объем из применяемых гербицидов приходится на производные сульфонилмочевины, которые в сравнении с другими химическими классами гербицидов при низких нормах расхода обладают высокой биологической активностью, широким спектром действия и резко выраженной селективностью. При нормах расхода 5—100 г/га (по действующему веществу) они эффективны как при довсходовом, так и послевсходовом применении против большинства видов двудольных сорняков на посевах зерновых культур, сои и др. [19, 20, 21, 22].

Следует отметить, что некоторые производные сульфонилмочевины, содержащие хлорсульфурон, метсульфурон-метил, триасульфурон, тритосульфурон, имеют высокую персистентность в почве и относятся к группе особо опасных гербицидов (сумма баллов более 20). Последействие проявляется при повторном применении сульфо-

Таблица 3 Экотоксикологическая оценка ситуации по применению пестицидов на территории Ульяновской области в 2013 году

Администра- тивный район	Посевные площади S _o , га	Условная доза (У _д), кг/га	Средний оценочный индекс (И _{ср})	Интегральный экоток- сикологический индекс (ИЭТИ)	Экологическая ситуация
Мелекесский	127,2	0,61	8,8	26,8	Малоопасная
Николаевский	31,0	0,08	4,2	1,68	Малоопасная
Сурский	50,4	0,42	7,6	16,0	Малоопасная
По области	1010,3	0,34	7,1	12,1	Малоопасная

нилмочевин в севообороте, при длительном периоде низких температур, незначительном количестве осадков, что характерно в отдельные годы для условий Ульяновской области, все это может замедлить распад этих гербицидов и увеличить риск для культур, следующих в севообороте, а также изменить качество растительной продукции. Например, для условий, характерных для нашего региона, доза гербицидов на основе хлорсульфурона и метсульфурон-метила не должна превышать 10 г/га [22]. Однако ряд гербицидов производных сульфонилмочевин быстро разлагаются в почве, к таким относятся препараты на основе трибенуронметила, тифенсульфурон-метила, трифлусульфурон-метила.

К малоопасным гербицидам относят производные фталевой кислоты (глифосат), которые обладают низкой токсичностью, персистентностью (менее 1 месяца) [15].

Изучение ассортимента, объемов и экологической опасности каждого из применяемых пестицидов позволило провести оценку экотоксилогической ситуации на территории отдельных районов и в целом по Ульяновской области, которая приведена в таблице 3.

Объем применения пестицидов (условная доза) в анализируемых районах варьировал от 0,08 до 0,61 кг/га, в среднем по области составил 0,34 кг/га.

Средний оценочный индекс, который учитывает площадь применения пестицидов и их опасность, варьировал в пределах 4,2-8,8 и по области составил 7,1 единиц. Интегральный экотоксикологический индекс

на территории Инзенского района составил 1,68, Сурского района 16,0 и Мелекесского района - 26,8, по области - 12,1 единиц, что, согласно методике, оценивается как малоопасная экотоксикологическая ситуация.

Выводы

- 1. Прогнозируемый рост посевных площадей и объем производства продукции растениеводства связан с более широким основанием элементов интенсификации, среди которых важное место занимает защита растений. В условиях сокращения роли агротехнических мер борьбы с вредными организмами в связи с нарушением структуры посевных площадей, освоением технологии no-till и минимальной обработки почвы возрастет роль химических средств защиты растений, это приведет к росту применения СЗР на полях нашего региона. С целью снижения отрицательного воздействия на окружающую среду, подбор пестицидов для защиты растений, необходимо проводить, в том числе, с учетом токсиколого-гигиенических, эколого-агрохимических и экотоксикологических показателей.
- 2. В земледелии Ульяновской области наметился рост применения объемов пестицидов, в среднем за 2011-2013 гг. обрабатывалось 69,9 % от посевных площадей.
- 3. Ассортимент применяемых пестицидов существенно различался по токсиколого-гигиеническим, эколого-агрохимическим и экотоксикологическим критериям и представлен особо опасными, среднеопасными и малоопасными препаратами. К особо опасным инсектицидам относятся: диазинон, карбофос, би-58 новый, семафор; фунгици-

дам: беномил, суми-8, медный купорос; гербицидам: ацетохлор, пивот, линтур.

4. Оценка экотоксикологической ситуации на территории Ульяновской области в 2013 году показала, что удельная доза пестицидов (пестицидная нагрузка) составила 0,34 кг/га, при интегральном экотоксикологическом индексе 12,1 единиц, что оценивается как малоопасная ситуация.

Библиографический список

- 1. Государственная программа развития сельского хозяйства и регулирования рынков сельскохозяйственной продукции, сырья и продовольствия на 2013-2020 годы (утверждена постановлением Правительства Российской Федерации от 14 июля 2012 г. № 717) [Электронный ресурс]. Режим доступа: Официальный интернет портал Минсельхоз России.
- 2. Кирюшин, В.И. Теория адаптивноландшафтного земледелия и проектирование агроландшафтов / В.И. Кирюшин. - М.: КолосС, 2011. — 443 с.
- 3. Морозов, В.И. Земледелие с основами почвоведение и агрохимии: [учебное пособие] / В.И. Морозов, А.Л. Тойгильдин. Ульяновск: УГСХА им. П.А.Столыпина, 2012. 302 с.
- 4. Исайчев, В.А. Технология производства, хранения и переработки продукции растениеводства: учебное пособие / В.А. Исайчев, Н.Н. Андреев, А.Ю. Наумов. Ульяновск: УГСХА им. П.А.Столыпина, 2013. 500 с.
- 5. Ганиев, М.М. Химические средства защиты растений: учебное пособие / М.М. Ганиев, В.Д. Недорезков.- 2-е изд., перераб. и доп.- Спб; М; Краснодар: «Лань», 2013.-400 с-.(Учебники для вузов.Специальная литература).
- 6. Куликова, Н.А. Гербициды и экологические аспекты их применения / Н.А. Куликова, Г.Ф. Лебедева. М.: Книжный дом «ЛИБРОКОМ», 2010. 152 с.
- 7. Анализ рынка химических средств защиты растений в России в 2008-2012 гг., прогноз на 2013-2017 гг. 2013. 107 с.
- 8. Спыну, Е.И. Математическое прогнозирование и профилактика загрязнения окружающей среды пестицидами: моногра-

- фия / Е.И. Спыну, Л.Н. Иванова. М.: Медицина, 1977. 168 с.
- 9. Словцов, Р.И. Экологическая оценка безопасности гербицидов для агроценоза. Рекомендации по региональному применению гербицидов в Российской Федерации / Р.И. Словцов. М., 1998. С. 15-22.
- 10. Жеребко, В.М. Эколого-токсикологические аспекты применения гербицидов на посевах сои / В.М. Жеребко // Материалы второго Всероссийского научно-производственного совещания (ВНИИФ). Голицино, 2000. С.277-283.
- 11. Кавецкий, В.Н. Мониторинг пестицидов и критерии экотоксикологической оценки их применения в агроэкосистемах: автореферат дис. ... доктора сельскохозяйственных наук / В.Н. Кавецкий. М., 1991. 40 с.
- 12. Ларина, Г.Е. Методология экологотоксикологического мониторинга гербицидов в агроэкосистеме (на примере производных сульфонилмочевины и имидазолинона): автореферат дис. ... доктора биологических наук / Г.Е. Ларина. М.: МСХА, 2007. –38 с.
- 13. Соколов, М.С. Методика составления схематических карт использования и условий детоксикации пестицидов / М.С. Соколов, М.А. Глазовская // Методы и проблемы экотоксикологического моделирования и прогнозирования. Пущино,1979. 20 с.
- 14. Адаптивно-ландшафтная система земледелия Ульяновской области. Ульяновск: ООО Колор-Принт, 2013. 354 с. —15. Зинченко, В.А. Химическая защита растений: средства, технология и экологическая безопасность / В.А. Зинченко. 2-е изд. перераб. и доп.-М.: КолосС, 2012. 247 с.
- 16. Постановление Главного государственного санитарного врача РФ от 21.10.2013 N 55 «Об утверждении ГН 1.2.3111-13 «Гигиенические нормативы содержания пестицидов в объектах окружающей среды (перечень)» [Электронный ресурс]. Режим доступа: КонсультантПлюс.
- 17. Морозов, В.И. Защита полевых культур от засоренности в системах земледелия: учебное пособие / В.И. Морозов, А.И. Голубков ,Ю.А.Злобин. Ульяновск: УГСХА, 2007. 174 с.
 - 18. Тойгильдин, А.Л. Эффективность

- гербицидов ЗАО «БАСФ» при возделывании сои в условиях Ульяновской области / А.Л. Тойгильдин, М.И. Подсевалов, А.В. Васин // Поволжье Агро. 2013. № 1-2 (36-37). С. 30-32.
- 19. Макеева-Гурьянова, Л.Т. Сульфонилмочевины новые перспективные гербициды / Л.Т. Макеева-Гурьянова, Ю.Я. Спиридонов, В.Г. Шестаков // Агрохимия. 1987. № 2. С. 115—128.
- 20. Спиридонов, Ю.Я.Современное состояние применения гербицидов (обзор публикаций за 2008-2009 гг.) / Ю.Я. Спиридонов, С.Г. Жемчужин // Агрохимия. 2011. № 9. С. 82-94.
- 21. Рудая, Л.А. Биологическая активность и токсикологические свойства гербицидов производных сульфонилмочевины / Л.А. Рудая // Проблеми харчування. 2009. № 1–2. С. 53-59.
- 22. Спиридонов, Ю.Я. К вопросу о последействии сульфонилмочевинных гербицидов в агроценозах / Ю.Я. Спиридонов, Г.Е. Ларина, Т.В. Захарова // Сборник тезисов докладов международной научно-практической конференции «Химический метод защиты растений. Состояние и перспектива повышения экологической безопасности» Всероссийский институт защиты растений, Российская академия сельскохозяйственных наук. Спб, 2004. С. 175—178.